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The tremendous successes in rocketry which made possible flights into space
have greatly enhanced the Soviet public's interest in the universe.

In this book a series of questions are considered: what is the universe; what
will man encounter when he penetrates it; what velocities would be required; what
should be the trajectories and the most advantageous times for flights to the moon, to
other planets of the solar system, and to the nearest stars; what means can be used to
determine the position of a spacecraft traveling in space.

The book is well illustrated. It reflects the latest Soviet and foreign achievements
in the field of astronautics and astronomy.

The book is intended for a wide circle of readers interested in questions related
to the conquest of space,




PREFACE

The beginning of the second half of the twentieth century has been marked
by great developments in science and technology. The penetration into the
depth of the nucleus, which was crowned by the realization of controlled
nuclear reactions, on the one hand, and the exploration of space on the
other, are perhaps mankind's most important achievements in this period.
Great interest in many problems related to the universe has been aroused
in a wide circle of the Soviet public, and especiallyamongthe youth. Indeed,
can one remain indifferent to the stories of heroic countrymen, hero-
cosmonauts, who have made these flights into space? Is it possible to read
without excitement even the miserly brief lines of newspaper announcements
of flights by artificial satellites and space rockets, of the unprecedented
scientific experiments in space and of the outstanding scientific discoveries
that have been made?

Space travel has always been a subject of special popular interest. A
proof of this is the publication of so many works of science fiction. Real
accomplishments have now come to replace fantasy. Man has penetrated
into the near cosmos, and automatic interplanetary stations with numerous
instruments have been launched from the earth to the moon and to the near-
est planets — Venus and Mars.

In his eternal aspiration to know the secrets of the universe, man is not
satisfied with the results so far achieved. Piloted spacecraft will fly to
the moon and to neighboring planets, and, perhaps within the lifetime of the
present generation, spaceships from the earth will be sent to the remote
planets of the solar system and even beyond its boundaries.

However, the flight of man even to the nearest celestial body — the
moon — requires the solution of very complicated scientific and technological
problems and careful preparation.

In a talk with the delegates of the Third World Convention of
Journalists on 25 October, 1963, N.S.Khrushchev answereda question onthe
possibility of a flight by Soviet cosmonauts to the moon as follows:

""At present we are not planning flights of cosmonauts to the moon.
Soviet scientists are working on this question, studying it as a scientific
problem, and conducting the necessary investigations. I have read the
report that the Americans want to land a man on the moon in 1970... We
do not wish to compete in the sending of men to the moon without careful
preparation; it is clear that no good would come out of a competition of that
kind, which, on the contrary, would be harmful, since it could result in
the loss of human lives... Before man can make a successful flight to the
moon much work and sound preparation will be required."

In connection with the huge successes in astronautics recently achieved
in the USSR and abroad, a large number of special articles and popular
essays have appeared which analyze the results obtained and consider the



immediate and long-term prospects for man's penetration into the depths
latest

Methods of solving the most important problems of cosmic navigation
are described in a number of recently published works. Among them one
should particularly note the works of Aleksandrov and Fedorov /2/%,
Seleznev /29/, Levantovskii /19/, and Erike /41/, to which the author refers
readers who are interested in problems of space navigation and who wish
to study this new highly-interesting field of science in greater detail.

This book is designed for those first being introduced into this subject.

In it the author has endeavoured to consider the various aspects of navi-
gation, and to show how the fundamental questions involved in the navigation
of space vehicles have been solved. However, it is not a study of space
navigation problems and not a textbook; the author has therefore tried to
present his material as simply as possible. It remains for the reader to
judge how far he has succeeded in these aims.

The book is intended for a wide circle of readers interested in the latest
achievements in the conquest of space, and particularly for young people
eager for knowledge, and if the reader finds in this work useful information,
if his reading arouses in him a lively interest in the questions discussed,
the author will consider his task fulfilled.

The author takes this opportunity to express his profound thanks to
Engineer-Colonel V. P, Seleznev, Doctor of Technical Sciences, who made a
number of valuable comments and suggestions which were extremely
helpful in the preparation of the manuscript.

*
Numbers in oblique brackets relate o the bibliographical references at the end of the book.

vi




INTRODUCTION

On 4 October, 1957, inthe USSR, for the first time in man's history an
artificial earth satellite was successfully launched into orbit. Man had
created an artifical moon; a velocity had been attained which made it
possible to realize prolonged flights in space.

We have already become accustomed to the vigorous tempo of modern
scientific and technological developments. We perceived the progress of
aviation and the rise in the velocity of airplanes as usual phenomena, but
this event profoundly excited us. Indeed, for the first time in the history
of mankind, a velocity had been attained (over 28,000 km/hr!) which exceeds
the velocity of modern jet planes by a factor of more than 10. A terrestrial
body created by man's hands reached a height of about 1000 km. The dream
of reaching space had been realized by the Soviet people.

The 20th century is the century of electricity, atomic energy, cyber-
netics, computers, automation, and new plastic materials. Obviously, it
is not less justified to call it the century of the conquest of space, the
century of man's escape beyond the boundaries of the "air ocean'' — the
atmosphere of the earth. This is confirmed by the remarkable achieve-
ments in the conquest of space and the unparalleled tempo of the develop-
ment of astronautics — the science and practice of flights in space.

On 3 November, 1957, the second artificial earth satellite was launched
into orbit by the USSR. The USA, the foreign country leading in
scientific and technological developments, put its first artificial earth
satellite — ""Explorer I'' — into orbit only on 31 January, 1958,

With the launching of the artificial earth satellites there arose the
possibility of direct experimental investigation of the upper layers of the
atmosphere and of outer space. Astronomy, geophysics, meteorology,
and other sciences received a new, extremely powerful instrument of

research. Even the first launchings led to outstanding scientific discoveries.

The radiation belts of the earth were discovered by direct experiment, the
values of the parameters of the upper layers of the earth's atmosphere were
determined and extensive investigations on the earth's magnetic field were
carried out. Soviet, and later also American cosmonauts demonstrated

the possibility of prolonged human flight in outer space under conditions of
weightlessness.

The launchings in 1957-1958 of the Soviet earth satellites (sputniks) made
it possible to accumulate the necessary material for flights deeper into
space. On 2 January, 1959, a Soviet rocket was launched in the direction
of the moon. In this case the second escape velocity — the minimum
velocity necessary to get free of the gravitational field of the earth — was
attained. On 12 September, 1959, a second rocket to the moon was
successfully launched, and on 14 September at Ohr 02 min 24 sec Moscow



time it reached the surface of the moon. For the first time in history a
flight had been made from the earth to another celestial body. On 4 October, -
1959, the third Soviet cosmic rocket was launched to the moon, and unique
photographs of the part of the lunar surface which is not visible from the
earth were obtained. These made it possible to prepare an atlas of the
moon and a lunar globe,

While 1959 can be called the year of Soviet lunar flights, 1961 can be
called the year of the first manned space flights and the first interplanetary
flights. The dates 12 April and 6 August, and the names Yu. A. Gagarin
and G. S. Titov will forever be remembered in the history of mankind.
People will never forget the feat of Soviet cosmonauts, the first to pave the
way to the stars. On 12 February, 1961, for the first time in history, a
Soviet automatic interplanetary station was launched to Venus.

On 20 February and 24 May, 1962, the American astronauts J.Glenn
and S. Carpenter made their orbital flights. This was followed by a new
achievement of the Soviet people, an oustanding success of Soviet science
and technology — the orbital flight of several days of the two cosmonauts
A.G.Nikolaev and P.R. Popovich in August 1962; then the 1 November
launching of the automatic interplanetary station '"Mars I' — the next
attempt to penetrate into the depths of the solar system. The "multi-day"
double flight in the summer of 1963 in the manned satellites '"Vostok V'
and ""Vostok VI" of V. F. Bykovskii and of the first woman cosmonaut
V.V.Tereshkova — a new example of heroism and courage — was a further
outstanding success of Soviet science and technology. The Soviet launching
of the maneuverable spacecraft '""Polet I'" on 1 November, 1963, opened a
new page in the conquest of space.

Man's indomitable will, supported by the greatest achievements of his
mind, will every day penetrate further and further beyond the limits of the
earth's atmosphere.

The science dealing with the study of the problems of interplanetary
space flights is called astronautics. It includes a whole series of indepen-
dent scientific disciplines. A constituent part of astronautics is the science
which can be called space navigation. This science has not yet been
definitively formulated. The scope of problems which have to be studied
has not yet been defined, its purpose and problems are not yet clearly
delineated. However, this science is an essential and important one,
particularly with the beginning of flights into the depths of the universe.

It would seem that the fundamental problems to be considered by this
science will be those connected with the choice of the most advantageous
flight trajectories of spaceships, as well as the problems connected with
the guidance of spaceships along their prescribed trajectories. The
solution of these questions requires first of all a study of the universe.
Astronauts, spacecraft captains, and pilots of future spaceships will need
to know the navigational structure of that part of the universe in which they
have to fly their interplanetary ships.

Like seamen and land travelers studying geography, astronauts should
have a working knowledge of cosmology — one of the branches of astronomy
which deals with the structural regularities of the universe — and some other
other branches of astronomy. In fact, there will be take-off and arrival
points for spaceships not only on the earth, but also on other planets and
celestial bodies. The trajectories of these ships will pass through gravita-
tional fields of other celestial bodies and therefore the form and parameters




of the trajectories of the spaceships will be determined by the physical
characteristics of those celestial bodies, primarily their masses. The
choice of the safest path for a spaceship also requires the study of the
position of meteor streams and dangerous zones of intense cosmic radiation.

The solution of a very important problem of navigation — determination
of the position of the spacecraft in space — would be impossible without
knowledge of such subjects as the dimensions of celestial bodies, their
apparent brightness, their relative position and so on.

Finally, the cosmic traveler will need to know what to expect on arrival
at the celestial body to which he is heading; what his weight will be there,
i.e., what the gravitational acceleration on the surface of the celestial body
is; what kind of atmosphere the celestial body has; the condition and tem-
perature of its surface.

This is far from being a complete list of the most important problems in
the field of cosmology and other branches of astronomy, which astronauts
must get acquainted with when planning to fly to other planets, to other
worlds. Accordingly, the first chapter of this book gives a short description
of space and of the nearest celestial bodies; the second chapter deals with
the question of orbits and trajectories for reaching the nearest celestial
bodies and gives a comparative evaluation of them; and in the third chapter
various possible methods and devices for resolving the principle problems
as well as some of the subsidiary questions involved in the navigation of
interplanetary ships and low-orbit spacecraft are described.



Chapter 1
THE LIMITLESS EXPANSE OF THE UNIVERSE

§1. Constellations and Stars

On a clear night we can see a majestic picture of the starry firmament.
It is so familiar that we no longer admire its beauties or even pay attention
to it at all. However, one need only look once more at the stars and
constellations and compare the colors of some of the brightest stars, to
realize their unique beauty. On a particularly dark night, far from the city
or large populated areas an even more majestic sight lies before one's eyes.
The large stars then seem quite close and beyond them a multitude of tiny
stars form what appears to be a latticework screen,

This view approximates that seen from a spaceship, except for one
feature of the astronaut's view that is unavailable to a terrestrial observer:
the dazzling white-hot sun seen against a background of black sky and bright
stars.

From the most ancient times the stars have served as a reliable means
of guiding navigators; it was by the stars that the course of the ship and its
position were determined. Even today, observations of the stars are widely
used in marine and aerial navigation. It can be assumed that in navigation
of spaceships, methods based on the measurement of the positions of the
stars will also find a wide application.

Observation of the starry firmament shows us that the brightest stars
form groups of characteristic, easily remembered shapes. For example,
in midwinter, soon after nightfall we can see near the southern part of the
horizon a group of bright stars forming a trapezoid in the center of which
is seen a line of three stars of almost equal brightness.

These star groups were called constellations by the ancient civilized
peoples. Ptolemy (2nd century B. C.) already mentioned 48 constellations.
The constellations received proper names, taken from legends and myths,
in particular from the Greek mythology. The group of stars mentioned above
belongs to the constellation Orion. Everyone is familiar with the constella-
tion of the Great Bear [Ursa Major]. There are the constellations Auriga,
Gemini, Leo, Scorpio, Aquila, Andromeda, Vela, and so on,

In astronomy the same system of division of the celestial sphere into
constellations is used now as was used by the ancient Greeks. The impor-
tant difference is that now constellations are understood to be not mere
groups of stars, but sections of the starry firmament. At the present time
the whole sky is divided into 88 such sections — the constellations.

The starsin the constellations are denoted by letters of the Greek
alphabet in the order of decreasing brightness (a, B, v, 8 , and so on). In
addition, the brightest stars have proper names. Thus, the star « Andro-
medae (i.e., the brightest star in the constellation Andromeda) is called




Alfaretz, the star ¢ Ursa Minoris — the North Star or Polaris, the star
a Geminorum (i. e., the brightest star in Gemini) —Castor, and 8 Geminorum
— Pollux. The brightest star in the sky —a Canis Major — is called Sirius.

Because of the great distances to the stars and the small apparent
angular velocity of their motion relative to one another, even astronauts
on flights to remote planets of the solar system will observe the usual
terrestrial picture of the stars and their constellations. Moreover, from
the spaceship it will be possible to see them during the whole flight, since
there will be no cloudiness and the dazzlingly bright sun and moon would
not obstruct observation of the stars.

The use of astronomical methods of spacecraft navigation requires the
selection of stars for the solution of a given navigation problem. The
positions of the stars, their spectral characteristics and their brightness
are the basic factors to be considered in selecting the stars to be used for
space navigation.

The apparent brightness of the star is denoted by its stellar magnitude.
Even in ancient times attempts were made to classify stars by their apparent
brightness. Two thousand years ago, Hipparchus proposed to divide the
stars according to their brightness into stellar magnitudes.* This method
of expressing the brightness of stars by the stellar magnitude is still used
today.

The classification of stars into stellar magnitudes, due to certain
features of our eyesight, is based on the Weber-Fechner law. This
law is common for all the sensory organs of man and is used by physi-
cists to estimate the intensity of sounds and noises. For the eyesight this
law can be formulated as follows: if the strength of the light
source varies in a geometrical progression, then the
corresponding sensation of brightness varies in an
arithmetic progression.

The scale of apparent brightness was defined so that the ratio of the
brightness of a star of a given magnitude (E,,) to the brightness of a star of
the next lower magnitude (E, ;) is constant:

Em
Em+l

Let us denote this ratio by n. Then, stars of the second magnitude are
weaker than stars of the first magnitude by a factor of a. Stars of the third
magnitude are weaker than stars of the second magnitude, also by a factor
of n, and so on. Compared with the brightness of a star of the first magni-
tude, the brightness of a star of the second magnitude is lower by a factor
of nt, the brightness of a star of the third magnitude is lower by a factor
of n2, of the fourth magnitude by a factor of n%, of the fifth magnitude by a
factor of a4, and so on.

Study of ancient star catalogues has shown that for all the observers the
ratio of the brightness of stars of two adjacent stellar magnitudes was
maintained quite accurately as approximately 2.5. It was determined that
on the average n = 2.512. Thus, a star of any magnitude shines with a
luminosity approximately two-fifths that of the stars of the preceding stellar
magnitude. For a more accurate notation of the apparent brightness of
stars, the stellar magnitudes are expressed not only by integers, but also
by decimal fractions, and the brightest celestial bodies even have a negative
stellar magnitude.

= const.

* [Prolemy is usually credited with inventing this method of classifying the stars. )



A man with an average eyesight can see stars up to the sixth stellar
magnitude inclusive. It is calculated that there are about 4800 such stars
in the sky /17/. According to some other data, the number of stars visible
by the naked eye is estimated to be 5720 /18/. By means of modern optical
instruments it is possible to observe stars up to the 21st or 22nd stellar
magnitude. The number of stars up to the 21st stellar magnitude in the sky
is estimated to be approximately 889 million.

The apparent brightness of artificial space objects is also estimated by
stellar magnitude. Thus, in the announcement on the automatic inter-
planetary station "Mars I'" of 5 November, 1962, it was stated that,
according to photographs, the station and its carrier rocket were seen on
the background of the night sky as stars of the 14th and 13th stellar magni-
tudes, respectively.

It is quite difficult to determine the zero stellar magnitude in the scale
of star magnitudes. However, if it is agreed that a certain star has a
definite stellar magnitude, then the magnitudes of other celestial bodies
can be determined with respect to this reference star.

In astronomic practice, the stellar magnitude of celestial bodies is
determined by means of special instruments called photometers. The
luminosity of a celestial body is compared with the luminosity of a star
whose stellar magnitude is determined or known. Sometimes an artificial
star is used as a standard in the instrument for this purpose.

The stellar magnitude of an international candle, placed at a distance of
1 km, is 0.8. The star magnitudes of some celestial bodies are as follows:
The brightest star, Sirius, has a negative stellar magnitude of minus 1.6.
The stellar magnitude of the brightest stars of the northern sky are: Vega,
0.1, Fomalhaut, 1.3; Polaris, 2.1. It is interesting to note that the stellar
magnitude of the sun is minus 26.8. the moon in the first and last quarters
is minus 9, and the full moon is minus 12.6. The sun is brighter than the
brightest star Sirius by approximately a factor of 10 billion.*

Travelers to other planets will observe variation of the apparent bright-
ness of planets. There will be an increase in the brightness when approach-
ing the planet and a decrease going away. Future travelers beyond the
limits of the solar system will also be able to observe a variation of the
brightness of the sun and of the nearest stars. Thus, from the boundaries
of the solar system the sun will be seen as a star of minus 4 stellar
magnitude. This is equal to the maximum brightness of Venus as observed
from the earth.

Look again carefully at the starry sky and compare the colors of the
bright stars. The red stars such as Arcturus, Aldebaran, and Antares
differ from the bluish white stars like Rigel, Deneb, and Vega. The colors
of stars vary (as the colors of solid bodies heated to different temperatures)
from cherry red to white and even a bluish color. Star colors are classified
by numbers according to a special scale. Thus, the extreme white blue
and dark red colors are estimated respectively by minus 2 and 10. Inter-
mediate colors are estimated by intermediate numbers. Thus, white
corresponds to 0, and orange to 7.

In space flight, cosmonauts may observe an interesting picture of
variation of the colors of celestial bodies (the Doppler effect**). When

* [The magnitude of the sun1s =268, Siriusis -1.6. The difference is 25.2 magnitudes or a factor of 2. 5122 .)
** Doppler, C.J, (1803—1853) — An Austrian scientist. The effect called by his name was discovered
in 1342,




flying at a high velocity towards the celestial body, it will appear bluer,
and when flying away, it will appear redder.

In the navigational systems of spacecraft, automatic direction finding
of stars will probably be effected by means of photoelectric devices. The
apparent luminosity of stars as seen by such means is also measured in
stellar magnitudes, and is termed the photoelectric stellar magnitude.
Compared to the human eye, photoelectric devices have a different
sensitivity to rays of different colors, and therefore the photoelectric
stellar magnitude of a star differs from its visual stellar magnitude.

§2. The Metagalaxy and the Galaxy. The Sun and the
Solar System

Space navigation should be based on the data of cosmology — a science
dealing with the study of the structure of the universe. Astronauts and
pilots of spaceships should have a sound knowledge of the structure of that
part of the universe through which they have to navigate their spacecraft.
Let us follow the astronauts and get acquainted, though in general lines,
with the basic laws of the structure of the universe.

The study of the universe is mainly made by means of optical instruments
such as telescopes. Very recently, radiotelescopes of various types have
come into use, which make it possible to receive extremely weak signals
of cosmic sources of radio emission. Finally, in the last few years, it
has become possible to use satellites equipped as automatic interplanetary
stations for this purpose.

The primarly fact impressed upon us by the study of the universe is the
tremendous distances between the celestial bodies. For this reason, in
astronomy, we do not use the ordinary units of length as the meter and
kilometer but larger units such as the astronomical unit, light year, and
parsec.

The astronomical unit (a.u.) is equal to the average distance
from the earth to the sun. Until recently the astronomical unit was
considered to be 149,500,000 km. This unit of length serves mainly for
measurements within the solar system. Thus, the average distance from
the sun to Mercury is 0.387a.u., from the sun to Jupiter, 5.2 a.u., and
So on.

The problems of space navigation, and the choice and calculation of
trajectories of interplanetary ships, require a very accurate knowledge of
the value of the astronomical unit. Failing this, the deviation of the trajec-
tory of a spaceship from its destination could reach many tens of thousands
of kilometers, and the flight task would not be accomplished. The problem
was that measurements of the astronomical unit by different methods gave
results differing from one another by hundreds of thousands of kilometers.

In 1961 and 1962, for the purpose of improving the accuracy of the
astronomical unit as well as solving some other scientific problems, Soviet
scientists succeeded in probing Venus with a radar beam. This new
achievement made it possible to determine more accurately the value of the
astronomical unit. According to the latest measurements, the astronomical
unit is equal to 149,599,300 km with a possible error of +2000km. This
amounts to approximately 1 part in 75,000 of the measured distance. This



outstanding result may be considered as an important contribution by Soviet
science towards the future conquest of interplanetary space. .

The astronomical unit is a huge unit of distance, but the other units, the
light year and parsec, are much larger.

The light year is the path traversed by a light ray in interplanetary
space during a year. This measure of length is expressed in kilometers by
the number 9,460,000,000,000 (9.46 - 101?), i.e., a light year is equal to about
9.5 trillion km.

But even the light year is a relatively small unit of distance in astronomy. q
The distances to stellar systems are expressed by a number of light years
followed by many zeros. Even the nearest stellar system, the nebula of
the constellation Andromeda, is approximately a million light years away,
and therefore the distances to stars and stellar systems are expressed in
terms of larger units — parsecs.

The parsec (ps) is the distance at which the radius of the earth's
orbit is subtended by an angle of 1 second. The angle subtended at a
star by the radius of the earth's orbit is called the annual parallax of the
star. The word parsec is formed by a combination of two words — parallax
and second. The parsec is equal to 3.26 light years, or 30.8°102km.

The distance to the nearest star, Proxima in the constellation Centaurus,
is 1.31 ps or 4.3 light years. The distance to Sirius is 2.67 ps or 8.7 light
years.

However, even the parsec is not the largest unit of length. To measure
distances to the remotest stars and star systems, and to measure their
dimensions, even larger units of length are used. These are the kiloparsec
(kps) and megaparsec (mps), which equal one thousand and one million
parsecs, respectively.

Astronomy is an ancient science, and the huge mass of data compiled
makes it possible to draw accurate conclusions on the structure of that part
of the infinite universe accessible to our survey. By means of modern
powerful telescopes it is possible to study stellar systems which are two to
three billion light years away. Even larger possibilities are opened by the
methods of radio astronomy. By means of modern radio telescopes, we
have succeeded in "'penetrating' into the universe to distances of up to ten
billion light years. Considerably more modest, for the time being, are
the results of direct sounding of space by means of automatic interplanetary
stations. Measurements have been made several tens of millions of kilo-
meters from the earth — between the orbits of Venus and Mars — but even
these first begininngs made it possible to unveil many secrets of the
universe. }

The part of the universe accessible to observation constitutes an
agglomeration of stellar systems or galaxies (Figure 1), called the meta~
galaxy. At the present time, over 100 million galaxies have been discovered. :
Indications have been observed that, at the limits accessible to modern |
observation, there is a concentration of galaxies. This is, apparently, the k
center of the metagalaxy.

In one of the stellar systems, called "the Galaxy'** our solar system is
situated. Our galaxy is lens-shaped. It is thickest at the middle and thins
out toward the edges (Figure 2). Its diameter is about 85,000 light years
(800 - 10 km),

* From the Greek word "galaktikos,” which means “milky.” Hence the Milky Way as a descriptive name of
our Galaxy.




FIGURE 1, Photograph of the galaxy in the constellation Andro-
meda, obtained by Miller (USA)

The reddish-yellow color of the central part appreciably differs
from the bluish color of the spiral arms,




Our galaxy is not uniform. It consists of individual stars of different
types, stellar clouds, star clusters, stellar associations, gaseous and dust
nebulae, clouds of interstellar gas, diffuse cosmic dust, and individual
atoms of chemical elements.

Thesun - . T oSt e

Loaas gyl
a 5 10 kps

FIGURE 2. Lateral view of the Milky Way galaxy as it would
appear to an observer situated in the plane of the galaxy (scale
in kiloparsecs)

Star clouds are huge spaces filled with individual stars. In these [unlike
star clusters] the stars are distributed at random. Star clusters — these
star groups are found in the constellations of our galaxy (the Milky Way)
and are of two kinds — open or galactic, and globular (Figures 3 and 4).
The first are distinguished by sparse concentration of stars in the center of
the cluster, the second by a dense concentration of stars there. In the
galactic clusters, the number of stars is estimated from hundreds to several
thousands., Another example of a galactic cluster is Pleiades. To the
unaided eye from six to eleven stars are visible, while with a telescope it
is possible to see hundreds of stars. One of the globular clusters, the
cluster in the constellation Hercules, is seen as a nebulous star of approxi-
mately the sixth stellar magnitude. Only by means of a powerful telescope
can we see it as a whole cluster of stars in the form of a sphere, strongly
concentrated towards its center. In this star cluster there are hundreds of
thousands of stars, of which only the brightest are seen. Stars of lesser
luminosity, even those as bright as the sun, are not seen.

Star associations, discovered in 1947 by Academician V. A. Ambartsum-
yan, have a common origin; the process of formation of these stars
occurred relatively recently and very likely is taking place even now. In
associations, the stars are not as crowded as in star clusters. Clusters
are unstable as the mutual attraction between them is negligible, and the
tremendous attraction of the galaxy as a whole tends to scatter any cluster
of stars.




FIGURE 3. The galactic star cluster in the
constellation Perseus

FIGURE 4. The globular star cluster in the
constellation Centaurus
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The existence of clouds of cosmic dust in interstellar space not only
weakens the apparent luminosity of stars and causes them to appear red
but also hides huge regions of our galaxy from us. Dark clouds or dark
nebulae on the star sky are clouds of cosmic dust (about 10,000 tons of it
falls daily on our planet) and gas, which completely hide the light of remote
stars. Thus, the central parts of our galaxy are hidden from us by dark
nebulae. ‘

In addition to dust, there exists in interstellar space a highly rarefied
gaseous ''atmosphere'' consisting mainly of atoms of hydrogen, as well as
a certain quantity of atoms of helium, oxygen, nitrogen, sodium, calcium,
and certain molecules (CH, NH, H20). There are also clouds of individual
gases. The average gas density in our galaxy is negligible, amounting to
only several atoms per cubic meter of space. However, the total mass of

the gas is large, being almost equal to the mass of all the stars of the galaxy.

The galaxy rotates about an axis perpendicular to its plane, but not as
a solid body. The motion of the stars in the galaxy resembles the motion
of the planets about the sun; the farther from the center of rotation, the
slower the motion.

The sun is situated almost exactly in the plane of the galaxy at a distance
of about 23,500 light years from its center (see Figure 2). It moves in its
orbit about the center bf the galaxy with a velocity of about 230 km/sec,
completing a revolution in about 190 million years. The total number of
stars in the galaxy is tremendous, 120-10° and the total mass of the galaxy
is 15,864 -10%3g, which is 8+ 101° times the mass of the sun.

Powerful sources of radio emission have been detected in the galaxy.
Three types of them are known now. The maximum radio emission of the
first type is situated near the center of the galaxy. Its source is clouds of
interstellar gas, ionized by the light of the nearest hot stars. The second
type of radio emission is associated with the energy radiated by free
electrons moving with tremendous velocities in the weak magnetic fields of
the rarefied medium between the interstellar gas clouds. The first and
second sources usually have large angular dimensions (up to 20' and more)
and are called radio nebulae. Radio emission sources of the third type, in
contrast to the first two, have small angular dimensions (1 -10'"), and
therefore they are sometimes called '"radio stars.'

Some "radio nebulae' are formed by the explosion of supernovas; the
Crab nebulae in the constellation Taurus (Figure 5) consists of the remnants
of such an explosion. However, most of the presently known 'radio stars"
and '"radio nebulae' are not connected with our galaxy, but they are situated
beyond its boundaries.

Our galaxy is made of substances which consist of atoms whose nuclei
contain protons and neutrons and whose outer shells contain electrons. Some
scientists assume that there are galxies in the universe which consist of
antimatter — atoms having antiprotons in the nucleus and positrons in the
shell. In these worlds, antiparticles are stable and our particles, unstable.
However, in spite of this, all the physicochemical properties of the atoms
in both worlds would be identical. In "anti-worlds'" there would be the same
chemical compounds with the same composition and properties, and it is
perfectly possible that there exist in them the same organic and inorganic
materials, and perhaps the same living organisms, and even human beings,
as in our world.



The sun is the star nearest to us. It is designated by the symbol O-

The mean distance from the earth to the sun is equal to one astronomical
unit, i.e., 149,457,000 km.* This distance is traversed by a light ray in
8 min 18sec.

Due to the eccentricity of the terrestrial orbit, the distance from the
earth to the sun varies approximately within + 5 millionkm. The diameter
of the sun is 1,390,000 km, which is 109.1 times as large as the diameter
of the earth, and the angular diameter of the solar disk as seen from the
earth is about 32',

The mass of the sun is 1,99 103 g, which amounts to 99.86% of the mass
of all the bodies of the solar system. The average density of the sun is
not high, being equal to 1.41 g/cm3, and the gravity acceleration on its sur-
face is 275 m/sec?, which is approximately 28 times as much as that on
the earth. The circular velocity for the surface of the sun** is 439.3 km/sec
and the escape velocityt is 619.4 km/sec.

The sun is an incandescent gaseous body. The temperature of its surface
layers is about 6000°C. In the center of the sun the temperature reaches
20,000,000°C. The sun is the source of a tremendous amount of energy.
Each second it sends to the earth 40 quintillion kilocalories of heat. A
considerable part of this energy is scattered and partially absorbed by the
atmosphere. On the average 30% of this solar energy reaches the earth's
surface in the course of one year. This energy would be sufficient to melt
and boil a solid layer of ice 1000 km thick around the earth.

According to calculations, the sun loses about 240 million tons of its
mass every minute through radiation.

Main composition of the thermal radiation of the sun

%
Infrared rays .. .. ... e 51,0
Visiblerays . ... ... Lo 41,0
Ultraviolet rays .. ... ..o v it 7.7

Along with the the thermal radiation, the sun sends into space fluxes of
charged particles of mattertt. These particles, accelerated in the magnetic
fields of the sun, acquire tremendous energy — the energy of cosmic rays.

Relative composition of the cosmic radiation

%
Protons | L 80
a-particles . ... L 19
Co N, O 0.66
Na, Mg AL Siv.ivt e 0.12
S, A, Ca L e e e e e 0.04
Fe ........... St s e s e e s s et e e 0,02

The maximum intensity of the cosmic ray fluxes reaches 10° particles
per cm?/sec.

* [Notice that a few pages earlier, the value of the a.u. is given as 149,599,300km.]
** [The circular velocity is the velocity of a theoretical satellite whose orbit is just above the surface of the
sun, Cosmic velocities are dealt with in Chapter 11.)
t (Escape velocity isthe velocity required of a body to leave the gravitational field of the celestial body from
which it is launched, |
t#t So-called corpuscular radiation,




FIGURE 6, Photograph of the Crab nebula in the constellation
Taurus, obtained through a light filter which transmits only the
red line of nitrogen
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The tremendous energy production of the sun is due to thermonuclear
reactions taking place in the interior of the sun as a result of the high
temperature and huge pressure existing in its center.

The visible surface of the sun is called the photosphere. The photosphere
is the conventionally accepted boundary of the solar gaseous sphere, over
which the solar atmosphere is situated. Sunspots, faculae, and grains are
observed on the surface of the sun (Figure 6).

FIGURE 6. Sunspots and grains

Sunspots are solar formations with a temperature of 4000 to 4500 °C.
The spots look dark solely by reason of the contrast with the brighter
photosphere, which has a higher temperature. The spots have diverse
forms, but are mostly circular. A sunspot is a vortex of turbulent gases
on the sun. The lifespan of a spot is from one day to several months. The
dimensions of sunspots often reach 90,000 km in diameter, which is approxi-
mately 7 times the diameter of the earth. Occasionally, sunspots of con-
siderably larger dimensions appear. Thus, in March 1947, a spot of
214,600 km was observed. Often pairs and groups of spots are formed on
the surface of the sun.

The spots move from the eastern to the western limb of the sun due to
the rotation of the sun about its axis; theyalsomoveindependently over
the surface of the sun.

The solar activity depends on the number of spots and the relative area
of the sun covered by them. Usually spots appear periodically on the sun.
The complete period of variation of the solar activity is approximately 22
years. Maximum solar activity is observed on the average every 11.11
years. The last maximum occurred in 1958,

Faculae on the solar surface have the form of hairlike filaments of
different forms, whose brightness is higher than the brightness of the
photosphere. Sunspots are always accompanied by faculae, but on occasions




faculae are also observed separately from sunspots. Sometimes facular
fields are formed which cover considerable sections of the solar surface.

Grains are bright formations of oval form, covering the whole photo-
sphere in a reticular pattern. The dimensions of grains are relatively
small, reaching 400 to 500 km. Their temperature is 100 to 200°C higher
than the temperature of the photosphere. The lifespan of an individual grain
is only several minutes.

The sun is surrounded by an incandescent luminous atmosphere. A thin
layer of the solar atmosphere (about 500 km thick) lying immediately over
the photosphere is called the reversing layer. It passes gradually into the
chromosphere, visible during total solar eclipses as a thin reddish ring
around the sun, The chromosphere reaches a height of 15,000 km.

Calcium, hydrogen, helium, iron, titanium, and other chemical elements
have been observed in the solar atmosphere. The lowest layer of the solar
atmosphere has a gas pressure a thousand times lower than the atmospheric
pressure at the surface of the earth.

Very bright, short-lived flares — eruptions of gas that flare up rapidly —
are observed in the chromosphere. The lifespan of these flares is only
several minutes. They most often appear during the development or decay
of sunspots. Flares are peculiar explosions, resulting from a rapid
compression of magnetic fields, leading to a short-lived heating of a small
volume of solar gas to a temperature of about 30 million degrees. According
to the estimate of A.Sebernyi, corresponding member of the Academy of
Sciences of the USSR, some solar flares are equivalent to a simultaneous
explosion of from 30 to 100 thousand megaton atomic bombs over the area
of the flare, New interesting data on solar flares have been obtained by
means of unmanned interplanetary stations and space rockets.

During solar flares, short-wave, X-ray, and ultraviolet radiationis
generated, and protons with an energy up to 100 million ev are emitted.

The short-wave radiations enhance the ionization of the earth's ionosphere
which sometimes results in interruption of radio communicationin the short-
wave range. Penetration of protons into the earth's atmosphere causes
absorption of radio waves in the polar regions. These protons also consti-
tute a serious hazard for space flights.

In addition to these, large particle fluxes, moving with velocities of
1000 km/sec and more, are ejected by flares. They cause the aurora
polaris and magnetic storms on the earth. Finally, flares are accompanied
by powerful radio-wave emissions, which sometimes lead to a disturbance
in the operation of radar devices and a loss of radar visibility of the target.

With very strong flares, the flow of cosmic rays moving in the direction
of the earth sharply increases, indicating the formation of particles of a
high energy — up to 100 billion ev.

Cosmic radiation constitutes a serious danger both for the crew and
equipment of spacecraft. It causes a decrease in the insulation properties
of insulating materials, a modification of the properties of plastic materials,
and possibly even a modification in the properties of metals. Plastic
materials are particularly sensitive to cosmic radiation. Failures of
electronic equipment are also possible.

According to calculations, the weight of the radiation shield of a space-
ship should amount on the average to about a quarter of a ton per square
meter of the shielded area /22/. Shielding from radiation danger in space
flights is a serious problem which scientists and engineers must solve.




In various places, huge jets or flame tongues are ejected from the
chromosphere and ascend tens and hundreds of thousands of kilometers.
They are called prominences (Figure 7). The formation of prominences
is a periodical process, coinciding mainly with solar activity, but the
periodicity here is less clearly defined and, also, the prominence maxima
occur usually earlier than the peak of solar activity.

FIGURE 7. Different types of prominences

FIGURE 8. Solar corona during the eclipse of 30 June, 1954

The broad brilliant halo observed during total solar eclipses around the
sun is called the solar corona (Figure 8). The lower boundary of the corona




is the chromosphere. The corona extends over distances considerably
beyond the sun's radius. The further from the sun, the weaker it gets,
gradually merging with the background of the sky. In several instances,
the corona has been observed extending to distances of 4 to 5 solar radii
from the surface of the sun.

The form of the corona is different in different years and changes in
accordance with the amount of sunspots and prominences. At periods of
maximum solar activity, the corona surrounds the sun on all sides
approximately equally; at minimum it is elongated at the solar equator,
and at the poles it reduces to short rays. This leads to the conclusion that
the reasons for the formation of the corona are closely related to the
processes which take place on the surface and in the atmosphere of the sun.

In 1942 —1945 the radio emission of the sun was detected in quite a wide
band ( 8 mm to 15 m). The radiation of the chromosphere has wavelengths
of the order of centimeters, the radiation of the corona, of the order of
meters. The radio emission of the sun is due to the solar atmosphere,
which, as any strongly heated body, is a source of electromagnetic energy.
The intensity of radio emission does not remain constant. Individual surges
in the radio emission are connected with sunspots and chromospheric flares.

For a systematic study of all the phenomena of the sun and for a fore-
casting of the geophysical phenomena caused by the variation of the solar
activity, the so-called '"Sun Service'' was organized on an international
scale. A whole series of observatories in many countries, including the
USSR, conduct daily observations according to one plan. In the USSR all
the observations are sent for processing to the central "Sun Service,"
headed by the Solar Research Committee of the Academy of Sciences of the
USSR. Particularly valuable results on observation of the sun and in regard
to clarifying the connection between geophysical phenomena and solar
activity were obtained during the International Geophysical Year of 1957 -
1958, which was chosen to coincide with the time of maximum solar activity.

The sun exerts a great influence on the conditions of space flights. The
powerful attraction, or gravitational field of the sun, is a factor determining
the choice of the trajectory of the spaceship, the required velocities for the
execution of the interplanetary flight, and its periods. The flux of charged
particles and the sun's intense ultraviolet radiation necessitate the fore-
casting of solar activity, and choosing of times most favorable for
space flights; this involves observation of solar activity, and the organiza-
tion of a warning service against excessive radiation intensity. It is also
necessary to take into account in space flight the variations of the magnetic
field of the earth and disturbances of radio reception connected with solar
activity. Finally, the sun, like any other celestial body, can be used for
the determination of the motion parameters of a spaceship.

Much is still unclear as to the nature of the sun, its influence on geo-
physical processes, and the conditions of space flights. Unprecedented
possibilities for the solution of these problems are opened by the launching
of artificial earth satellites, automatic interplanetary stations, and space-
ships.

The sun is the central body of the solar system (Figure 9), which includes
the major planets and their satellites, the minor planets, or the asteroids,
comets, meteor showers and individual meteors, dustlike matter, and also
some meteoric material scattered in interplanetary space.




Nine major planets are known at present: Mercury, Venus, Earth, Mars,
Jupiter, Saturn, Uranus, Neptune, Pluto, aswell as 31 satellites of these
planets. The number of minor planets discovered, moving mainly between
the orbits of Mars and Jupiter, amounts to over 1800 and the number of
comets to about 500. It is assumed that there are over 100,000 comets and
50,000 to 100,000 minor planets in the solar system. It is also possible
that there are other major planets situated beyond the orbit of Pluto. There
is already strong evidence of the existence of a tenth major planet in the
solar system — Transpluto. The distance of this planet from the sun was
calculated and its revolution period about the sun determined, but we have
not yet succeeded in observing it directly.

Asteroids

FIGURE 9. The solar system with the orbit of Halley's comet (the
position of the comert in individual years is indicated on the orbit)

Compared with the sun, the dimensions of the planets are small (Figure
10). Their orbits lie approximately in the same plane, the plane of the
ecliptic (Figure 11).

All the bodies of the solar system revolve, strictly speaking, not around
the sun, but around the common center of gravity of the whole solar system,



with respect to which the sun itself describes a very complicated curve.
However, since most of the mass of the entire system is concentrated in
the sun, the displacement of the center of revolution is small.

Tage of the solar disc

O Neptune Uranus

Jupiter Saturn
o Q [¢] o
Earth Venus Mars  Mercury
O— e e e — ~ Pl
Earth Jo4n00 Moon o Fluto
¢ ﬁ 200 J00 4«00 $00thousands of
N N 1 N N 4 ) 1 ; kilometers

FIGURE 10. Comparative dimensions of the major planets and of
the sun
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FIGURE 11. Inclination of plaunetary orbits to the planc of the Earth's
orbit (the plane of the ecliptic)

What are the boundaries of the solar system? They are determined by
the distances ofthe remotest satellites of the sun — the so-called long-period
comets with periods of revolution close to one and a half million years.
Some of these comets at maximum distance are 6 trillion km(6 - 10'2km)
from the sun. This distance may be considered as the boundary of the solar
system.

The sun together with all its satellites is moving in space relative to its
surrounding stars with a velocity of about 19.5 km/sec towards the constel-
lation Hercules. As has already been said, the solar system participates
in the revolution of the entire galaxy around the galactic center.

We have already mentioned the fantastically great distances to the
celestial bodies. Their remoteness puts in doubt the possibility of flights
to other stars and, for the present and the near future, space flights will
have to be limited to the solar system, and more specifically, to the
nearest bodies of the solar system, i.e., the moon, Venus, Mars, and the
nearest minor planets. Therefore astronauts and pilots of spaceships
should have a sound knowledge of the physical characteristics of the bodies
of the solar system, the laws of their motion, and the conditions which they
will encounter on the moon and on the nearest planets. Before considering
these problems it is necessary to study, at least briefly, the various
astronomical coordinate systems and also the elements which determine the
motion parameters of celestial bodies in space. Otherwise, it is not
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possible to characterize the bodies of the solar system from the point of
view of the requirements of areonautics and space navigation.

§3. Systems of Celestial Coordinates. Elements of
Planetary Orbits

Several coordinate systems are used in astronomy to determine the
position of a celestial body in space. The galactic coordinate system is
convenient for determining the position of stars and star clusters of our
galaxy, as well as of star systems situated beyond the limits of the galaxy.
The positions of planets with respect to the sun and to the earth's orbit are
more conveniently determined in the so-called ecliptic coordinate system,
whereas the positions of celestial bodies with respect to the earth are most
conveniently determined in the equator and horizon systems of celestial
coordinates. The names of these coordinate systems originate from the
names of the planes which are basic in the given system. Naturally only
the last three coordinate systems are of interest to us and these will there-
fore be discussed in more detail.

In any system of spherical celestial coordinates, use is made of an
auxiliary sphere of arbitrary radius, called the celestial sphere, with the
center at one point in space. The celestial body is then projected on this
sphere.

The ecliptic system of coordinates. The ecliptic is the well-
known term applied to the great circle of the celestial sphere formed by the
intersection of the plane of the earth's
orbit with the celestial (star) sphere.
The annual motion of the sun among
the stars, as seen from the earth,
takes place along the ecliptic.

In the ecliptic coordinate system,
the center of the celestial sphere is made
to coincide with either the center of
the sun, in which case the ecliptic co-
ordinates of the heavenly body are called
heliocentric, or with the center of the
earth, in which case, the coordinates
Ecliptic are called geocentric.

The principal circles of the ecliptic
coordinate system are the ecliptic and
the latitude circle of the celestial body
(Figure 12). The latitude circle of a
celestial body is the term applied to the
FIGURE 12. Ecliptic system of coordinates: great circle of the celestial sphere
passing through the body and through
the poles of the ecliptic. The position
of the body in this coordinate system
is determined by the astronomical
longitude A, and the astronomical
latitude B. The astronomical latitude of a celestial body is measured from
the vernal equinox or Aries (T) (the point of the ecliptic at which the sun is
situated on 21 March of each year) along the ecliptic in the direction of the

Pole of the P
ecliptic

P!

Pand P’- poles of the earth; Y- vernal equi-
nox; pand - astronomical latitude and
longitude of the celestial body m
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annual motion of the sun to the point of intersection of the latitude circle
of the body with the ecliptic. The astronomical latitude is measured along
the latitude circle of the body in both directions from the ecliptic from

0 to + 90°.

In the equator system of coordinates (Figure 13), the basic
plane is the plane of the celestial equator, coinciding with the plane of the
terrestrial equator. The continuation
of the axis of revolution of the earth
formes the axis of the celestial
sphere, and its intersection with
the celestial sphere forms the
sphere's northern (P) and southern
(P")poles. The great circle of the
celestial sphere passing through
these poles is called the hour circle
of the celestial body. The ecliptic
intersects the equator at two points,
the vernal (T)and the autumnal (&)
equinoxes, and the vernal equinox
is therefore common to both the
ecliptic and the celestial equator.

In this coordinate system the
position of a celestial body on the

FIGURE 13. Equator system of coordinates celestial sphere is determined by
zand 2z’- zenith and nadir; « and s- right the I_'lghi_: ascension o and the
ascension and declination of the celestial declination & of the body. The

body M; ¢ - hour angle; p- polar distance right ascension is measured from

the vernal equinox along the

celestial equator in a direction
opposite to the apparent daily rotation of the celestial sphere up to the point
of intersection of the hour circle of the body with the celestial equator.
Sometimes the right ascension is expressed not in degrees, but in time units,
taking 360° as corresponding to 24 hours. The declination of a celestial
body is measured along the hour circle of the body in both directions from
the celestial equation from 0 to + 90°,

The apparent rotation of the celestial sphere resulting from the daily
rotation of the earth relates to the same axis and this means that the
equatorial coordinates of celestial bodies do not vary. This makes it
possible to construct in this coordinate system maps of the star sky and
star atlases.

Sometimes the position of the celestial body is determined by the
declination of the body and its hour angle. The great circle of the celestial
sphere which passes through the zenith and the poles is called the meridian
of the observer. The angle between the meridian of the observer and the
hour circle of the celestial body is called the hour angle t of the body. The
hour angle is measured from the point Q of the equator in the direction of
rotation of the celestial sphere. In conclusion it should be noted that the
hour angle varies in a uniform manner: in 24 hours it varies by 360°.

Knowing the equatorial coordinates of a spaceship makes it possible to
determine its position among the stars, e.g., for purposes of optical
tracking. Thus, in one of the TASS communiques on the 1961 launching of
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the automatic interplanetary station to the planet Venus, the precalculated
equatorial coordinates of the station for 1200 hours Moscow time for

3 March, 1961, were given. The announcement said: '"The right ascension
of the automatic interplanetary station at this time will be 0 hours 21 minutes
31 seconds: the declination, minus 1 degree 03 seconds.'

The horizon system of coordinates (Figure 14), whose basic
plane is the plane of the true horizon, is used to determine the position of
a celestial body with respect to the
earth's surface. Knowing the
horizontal coordinates of a spacecraft
makes it possible to estimate the
conditions for observation at a given
time from a given point on the earth,.
The pole of this coordinate system is
the piont of intersection of the plumb
line with the celestial sphere, called
the zenith 2, The great circle of the
celestial sphere passing through the
zenith, through the opposite point
(nadir 2’) and through the celestial
body is called the vertical of the body.

The position of a celestial body
and of a cosmic object in the horizontal
coordinate system is determined by the
FIGURE 14. Horizon system of coordinates ?Zimu'ﬁh A and altitude ii. The azimuth
4 and k - the azimuth and altitude of the 1s measured by the arc of the true

. o horizon from the north point N to the
celestial body M; z - the zenith distance of . . . .
the body. pc:»mt of mtersect.lon of the ver'tlcal
with the true horizon. The azimuth
is measured from the north point to
the east. The altitude is measured by the arc of the vertical from the true
horizon to the celestial body within the range of 0 to + 90°. Celestial bodies
and spaceships having negative altitudes are situated below the horizon and
are not visible from the given point on the earth.

If we project the celestial body on the surface of the earth, we obtain a
point at which its altitude is equal to 90°., This point is called the geo-
graphical place of the body, G.P. Owing to the rotation of the earth, this
point moves over the earth's surface. By analogy, the point at which the
height of the spaceship is equal to 90° can be called the geographical place
of the spaceship. To define the position of a spacecraft as viewed from
the earth, this point can be calculated for a given moment. Thus, in the
above-mentioned TASS announcement, it was said: ''By 1200 hours Moscow
time on 3 March, 1961, the station will be over the point with the coordinates
1 degree 15 minutes south latitude and 69 degrees 30 minutes east longitude. "
These were the coordinates of the geographical place of the interplanetary
station at the indicated moment,

Transformation from one coordinate system to another is made using
the formulas of spherical trigonometry.

The above systems of spherical coordinates have a serious disadvantage;
they do not allow for the determination of the position of the celestial body
in space, but only the position of the body on a sphere of arbitrary radius.
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This, however, is completely sufficient to solve most problems of practical
astronomy. Indeed, the airplane pilot who is measuring the coordinates of
celestial bodies in order to determine the position of the airplane is not
interested in the distances to them; he only needs to know the angular co-
ordinates of the celestial bodies, which determine their position on the
celestial sphere. However, in order to solve most of the problems of space
navigation one has to know the position in space of the spacecraft and of the
celestial bodies.

Thus, for flights inside the solar system, it is possible to use a
rectangular coordinate system commencing at the center of the sun (Figure
15). The OX axis of this coordinate system can be directed to the vernal
equinox Y, the OY axis lies in the plane of the ecliptic, and the OZ axis is
perpendicular to the OX and OY axes and directed to the pole of the ecliptic.
The rectangular coordinates x, y, and z of a spaceship give an unequivocal
determination of its position in space.

Pole of the
ecliptic

o

0 The sun

/ y

rx

FIGURE 15. Rectangular heliocentric coordinate FIGURE 16. Elements of planetary orbits
system for the solution of problems of space

N A~ aphelion; m- perihelion; ¢ - inclination
navigation p p n; - inclin of the

orbit; 7 -radius-vector of the planet; w- right ascen-
sion of the ascending node; w - angular distance of
the perihelion from the node; 6 - the truc anomaly of
the planet

It is, of course, possible to choose other coordinate systems. For
example, the positions of a spacecraftand of celestial bodies can be
determined in a rectangular coordinate system commencing at the center
of the earth and with the plane XOY coinciding with the equatorial plane of
the earth.

The calculation of the current spatial coordinates of celestial bodies
and spaceships is possible only if the elements of their orbits are known.
The motion of planets with respect to the sun takes place along elliptic
orbits.

The position of the orbit of a planet in space and of the planet on its orbit
are determined by the elements of the planet's orbit; namely,
the inclination of the orbit, longitude of the ascending node of the orbit,
distance of the perihelion from the node, semimajor axis, eccentricity,
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and mean anomaly at a given epoch (at a given moment) or the moment of
passage through the perihelion (Figure 16).

The orbit inclination i is the angle between the plane of the ecliptic
and the orbital plane of a planet. It may vary from 0 to 180°. An angle §
larger than 90° corresponds to a so-called reverse motion of the celestial
body.

The ascending node  of the orbit is the term applied to
the intersection point of the orbit with the plane of the ecliptic at which
the planet passes from the southern to the northern hemisphere of the
ecliptic. The opposite point of the orbit is called descending node ¥, and
the line connecting these two points is called the line of nodes. The line of
nodes lies both in the plane of the orbit and in the plane of the ecliptic,

The longitude of the ascending node of the orbit Q is
the angle in the plane of the ecliptic which is enclosed between the straight
line connecting the vernal equinox with the center of the sun and the straight
line connecting the ascending node with the center of the sun.

The point of the orbit nearest to the sun is called perihelion(/T), and the
farthest point is the aphelion (4). The line connecting these two points is
called the line of apsides. The distance o of the perihelion from the node
of the orbit is measured by the angle between the line of nodes and the line
of apsides. It is measured off along the orbit in the direction of motion of
the planet from the ascending node to the perihelion and determines the
orientation of the orbit in its plane. Sometimes the orientation of the orbit
is determined by the longitude of the perihelion Q' =Q + . Consequently the
angle Q' is measured in two planes: in the plane of the ecliptic up to the
line of nodes and in the plane of the orbit from the line of nodes to the line
of apsides. These elements determine the position of the planet's orbit in
space.

The semimajor axis, @, of the orbit, is equal to half the distance from
the perihelion to the aphelion. The eccentricity, e, of the orbit determines
the geometrical form of the orbit and is given by the formula

c V a8 — b8

e=—=—,
a a
where ¢ is the distance from the geometrical center of the elliptic orbit to
its focus (the center of the sun) and p is the semiminor axis of the planet's
orbit.

For elliptic orbits 0 <e<1. In the case of eccentricities close to zero,
the form of the orbit is close to a circle.

The mean anomaly M is a quantity equal at any moment to the arc
which the planet would describe after passing through the perihelion if moved
uniformly in a circular orbit completing one revolution in the period of
rotation P of the planet. Obviously, the mean diurnal motion of the planet
is 360°/P.

Let us now denote by T, the time of the passage of the planet through the
perihelion. Then, for the time T the mean anomaly is

360°
M= B (T —Ty).

Together with the mean anomaly the true anomaly of the planet has also
to be considered.
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The true anomaly ¢ is the term applied to the angle which is formed
by the line of apsides and the straight line r connecting the center of the sun
and the planet. This angle is measured from the perihelion in the direction
of motion of the planet. The true anomaly determines the position of the
planet on the orbit.

The motion of the planet along the orbit is characterized by its period of
revolution. We distinguish between sidereal and synodic periods of
revolution. The sidereal or stellar period of revolution is the term applied
to the time interval in which an observer situated on the sun would see the
planet in the former position with respect to the stars. The synodic period
is the term applied to the time interval in which the planet, as viewed by a
terrestrial observer, arrives at its former position with respect to the sun.
It is perfectly clear that owing to the earth's motion along its orbit around
the sun these two periods are different. Thus, the sidereal period of
revolution of the planet Mars is 1 year 231.73 days, whereas the synodical
period is almost 2 years 50 days.

These are the elements which determine the orientation of the orbit of a
planet in space and the position of the planet on the orbit. It should be noted
that these same elements also characterize the orbits of interplanetary ships
and the orbits of artificial satellites of planets. The only difference is that
the inclination of the orbit of satellites is measured with respect to the plane
of the planet's equator, and the designation of the extreme points of the
orbit includes a term denoting the planet.*

For artificial satellites of the earth these points are called perigee and
apogee**; of Venus, peri- and apovenus; of Mars, peri- and apomars; of
Saturn, peri- and aposaturn; of Jupiter, peri- and apojovian.t The extreme
points of the orbits of artifical satellites of the moon are called peri- and
apomoon or peri- and aposelena.tt

§4. The Earth

For spacecraft of any destination the earth constitutes the planet of
departure and arrival.

The earth is an ordinary planet of the solar system. Its astronomical
designation is & or @, The true form of the earth — geoid — is close to an
ellipsoid of revolution having a small flattening at the poles. The terrestrial
ellipsoid is now thought to have the following characteristics:

International Soviet
ellipsoid, ellipsoid,

1910 1940
Equatorial radius, km . ... ... .. ... o0 6378.388 6378.245
Polar radius, Km. . . .. .. o i i 6356.912 6356.863
Flattening . . . ... .. ... i 1:297.0 1:298.3

* The extreme points of the orbits of spaceships are sometimes called pericenter and apocenter.
** From the Greek word geo —Earth.

t From the Latin name of Jupiter —Jove.

tt The ancient name of the moon was Selena.
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For solving practical problems not requiring a high degree of accuracy,
the earth is taken to be a sphere of radius 6371 km,

Here are some physical characteristics of the earth. The area of its
surface is 510,083,000 km?, its volume is 1.083320:102km3 and its mass
is 5.974-10% g. About 7% of the mass of the earth is made up of water in
its various forms. The average density of the earth is 5.517 g/cm?, and
the average density of the surface layers is only 2.65g/cm3. The circular
velocity and escape velocity for the surface of the earth are 7.9 km/sec and
11.2km/sec, respectively.

The mean distance of the earth from the sun is 149,457,000 km. The
earth moves around the sun along an elliptical orbit with a mean velocity
of 29.76 km/sec, or about 100,000 km/hr.

The sidereal revolution period of the earth is 1 year 0.006 days. The
inclination of the earth's equator to its orbit is 23°27'. The eccentricity of
earth's orbit is small, being equal to 0.01673. This indicates that the orbit
of the earth is very close to a circle. The perihelion of its orbit occurs on
about 3 January and the aphelion on 4 July.

Owing to the diurnal rotation of the earth, all the points of its surface
have a certain linear velocity V;, which can be determined by the formula
(in m/sec):

V4 ==465 cos,

where ¢ is the latitude of the given point.

This velocity, naturally, should be taken into account in the launching of
spacecraft. When a spacecraft is launched in an eastern direction this
velocity '""helps' it to get into orbit. If the spacecraft is launched, for
example, from the equator to the east and the required velocity for entering
the appropriate orbit is 7.465 km/sec, then the rocket engines need only
give the ship a velocity of 7.0km/sec. The remaining 0.465km/sec are
""added' to the ship by the rotating earth,

The most important physical characteristic of the earth is the gravita-
tional acceleration on its surface. The gravitational acceleration deter-
mines the form and parameters of the orbits of spaceships leaving the
earth, and for a given orbit it determines the required initial velocity.

Theoretical and experimental studies show that the gravitational acceler-
ation is not constant for different points of the earth’'s surface. This fact
was first noted in 1672 by the French astronomer Riche. Fifteen years
later Isaac Newton proved theoretically that due to the flattening of the
earth as a result of its diurnal rotation the gravitational acceleration should
decrease from the poles to the equator. This conclusion was subsequently
confirmed by numerous direct measurements at various points of the
earth's surface.

Therefore the gravitational acceleration reduced to sea level depends on
the average only on the latitude of the location. Its magnitude g, for any
point of the earth's surface can be calculated by the formula

8s=got (gwo — gy) sin? g,
where g, and gye are the gravity accelerations at the equator and at the

poles, respectively. For the pole gye = 983.2 cm/sec?, and for the equator
go = 978.0cm/sec?,
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For practical calculations not requiring a high degree of accuracy, the
gravitational acceleration for the whole earth is equal to 981 cm/sec?,

The results of direct measurements of the gravitational acceleration at
various points of the earth's surface differ in a number of cases from
calculated values. These deviations are called anomalies of the gravitational
force.

The anomalies are due to nonuniformity in the structure of the earth's
core, both with respect to visible external masses (mountain masses,
islands, and so on), and to the density of the rocks forming the core.
However, the magnitude and character of the anomalies are also affected
by the internal layers of the earth.

In addition to the gravitational field, a magnetic field has also been
observed in the space around the earth. At present, it is assumed that the
general magnetic field of the earth can be represented as a sum of many
magnetic fields: the field of uniform magnetization of the terrestrial sphere,
originating mainly from the internal layers of the earth; the continental or
residual field, due to the nonuniform structure of the internal layers of the
terrestrial core; the anomalous field, due to magnetization of the upper
layers of the terrestrial core; the external field, produced by electric
currents in the upper layers of the atmosphere; finally, the variation field,
due to periodic variations in the character of the motion of charged particles
in the upper layers of the atmosphere.

For a long time, the magnetic field of the earth has helped to solve a
number of the most important problems of ship and airplane navigation.
Ordinary magnetic, gyromagnetic, and gyroinduction compasses are used
to measure the vehicle's course and to perform the navigation in a given
direction. Measurements of the magnitude of the elements of the terrestrial
magnetism, for example, the total force of the magnetism or its compo-
nents, allow the navigator to obtain the position line of the airplane.
Terrestrial magnetism will also aid space navigation. For example, many
scientists are considering the possibility of stabilizing the orbits of low-
orbit satellites by means of a sensitive magnetic element.

The motion of spaceships in the earth's magnetic field causes some
dynamic effects, which result in a deviation of the actual orbit of the space-
ship from the calculated one. These deviations, though small, should be
taken into account in a number of cases.

A quantitative estimate of terrestrial magnetism can be given by the
magnetic moment of the earth, which is the product of the volume of the
earth and its magnetization. The magnetic moment of the earth is equal to
8.3-1025 cgsm units, or 8.3-10' weber - m.* Such a magnetic moment is
equal to that of a sphere of nickel-aluminum alloy alnico) with a radius of
about 500 km which is magnetized to the maximum. This example gives
some idea of the degree of magnetization of the earth. The magnetic poles
of the earth do not coincide with the geographical poles. The coordinates
of the north magnetic pole are ¢ = 74° north latitude, » = 101° west longitude;
and the south magnetic pole, ¢ = 69° south latitude, ) = 143° east longitude.

The degree of magnetization of the earth can also be estimated by the
distribution of the magnetic field intensity at different points of the earth's

* A weber is the magnetic flux which, when linked with a single turn, generates an electromotive force of
1 volt in the turn, as it decreases uniformly to zero in one second.
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surface. The magnetic field intensity at the magnetic equator is 0.35 oer-
steds, and at the magnetic pole, 0.65 oersteds.*

Moving northalong a magnetic meridian a distance of one km at middle
latitudes, the vertical component Z increases, and the horizontal compo-
nent of the magnetic field of the earth H decreases approximately by 3 to 5v.
At a height of 20km, the horizontal component is lower than its value at
the earth's surface by only 1%, and at a height of 200km, by 10%. On the
average, the horizontal component decreases by 7y for each kilometer of
height. With increasing height, the magnitude of the vertical component of
the magnetic field of the earth decreases also.

The magnetic field of the earth extends to 100,000 km for all practical
purposes.
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FIGURE 17, Intensity of the earth's magnetic field as a function of the distance
from its center:

1- calculated variation of the magretic field intensity; 2- intensity, measured
by the second rocket launched in the direction of the moon.

Instruments mounted on the first satellites detected a considerable
difference between the real magnetic field of the earth and the calculated
one (Figure 17). This is apparently due to strong electric currents tens
of thousands of kilometers from the earth. The difference is particularly
large at distances of 20,000 to 22,000 km from the center of the earth. No
satisfactory theory of the earth's magnetism has yet been formulated. The
world magnetic survey during 1964 - 1965 will result in more accurate data
on the distribution of the elements of the magnetic field of the earth over
its surface and in space.

The earth is surrounded by a gaseous envelope, the atmosphere. The
motion of spaceships starting from the earth takes place in the atmosphere,
low-orbit spaceships move in the upper layers of the atmosphere, and the
paths of ships returning from space pass through the atmosphere. Over-
coming the resistance of the earth's atmosphere requires additional energy
expenditures to put a spaceship into orbit. The earth's atmosphere causes
a considerable heating of the ship and tremendous overloads on a descending
spaceship. The following is a brief description of the earth's atmosphere.

* A field intensity of 1 oersted acts on a unit positive magnetic mass with a force equal to 1 dyne. A smaller
intensity unit is the gamma, ¥, equal to 0.00001 oersted.
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The atmosphere participates in the rotational motion of the earth about
its axis. In addition, it has a complicated motion with respect to the sur-
face of the earth, which results in a continual change of its physical state.

The atmosphere is a mechanical mixture of gases, for the most part
nitrogen, oxygen, and argon. In addition, it contains varying amounts of
water vapor and carbon dioxide, and negligible amounts of hydrogen, helium,
neon, xenon, krypton, ozone, as well as methane and oxides of nitrogen. The
main gases constitute 99.97%, and the remaining gases only about 0.03% of
the atmosphere.

The following figures give some idea of the amount of gases in the earth's
atmosphere: the total weight of the atmosphere is approximately 5 - 10'*ton;
if the entire atmosphere could be compressed to the density of water, then
the globe would be covered by a 10 m thick uniform layer of compressed
atmospheric gases. It has been found that the relative content of the main
gases remains practically constant up to heights of 100 to 120km. The
absolute content of all the gases decreases with height. The atmosphere
is nonuniform in the vertical direction also with respect to its other physical
parameters: temperature, pressure, and so on (Figure 18).
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FIGURE 18. Vertical distribution of the pressure P, tem-
perature T, and density p according to measurements
from rockets made by the Central Aerological Observa=-
tory of the USSR ( TsAO) and from those made inthe USA

Depending on the variation of its physical properties, the atmosphere is
divided into several layers, or spheres (Table 1),

The troposphere is the atmospheric layer whose physical properties are
mostly dependent on the earth's surface. A characteristic feature of the
troposphere is the drop of air temperature with increasing height, reaching
on the average 0.65°C per 100 m of height. All the meteorological phenomena
are observed in the troposphere.




The highest wind velocities are observed in the upper troposphere, 1
to 2 km below the tropopause.

TABLE 1, Basic and transitional layers of the earth's atmosphere

Mean heights of the upper

Basic 1 h
asic layers (spheres) and lower boundaries, km

Transitional layers

Troposphere 0-11 Tropopause
Stratosphere 11-35 Stratopause
Mesosphere 35-—80 Mesopause
Thermosphere 80—800 Thermopause
Exosphere ( the lower boundary) 800

(over the poles)

1000
(over the equator)

Theoretical boundary of the 28,000
armosphere (according to (over the poles)
Smolukhovskii) 42,000

(over the equator)

The stratosphere is characterized by no temperature variation with
height.

The mesosphere is generally characterized by a considerable rise in
temperature with height in its lower part and fall of temperature in its
upper part. The composition of the main gases in the mesosphere is
approximately the same as in the lower layers of the atmosphere, but the
pressure is very low, varying from 2.5 mm Hg at the lower boundary to
0.01 mm Hg at the upper boundary.

Up to a height of 50 km there is an average rise of temperature of 3 to
4°C per km of height. At a height of 50 to 55 km the temperature is about
0°. The upper part of the mesosphere is characterized by a temperature
decrease withincreasingheight. At a height of 80 km, the temperature is
about -70°, Noctilucent clouds are sometimes observedin summer in the
upper part of the mesosphere, at heights of 82 to 85 km, indicating the
presence of air currents in the mesosphere.

The thermosphere is distinguished by a continuous rise of temperature
with height. It differs from the lower layers in other ways as well. The
oxygen in the thermosphere is in the atomic state. The disintegration of
oxygen molecules into atoms begins approximately at a height of 100 km
due to the ultraviolet radiation of the sun. Theoretical calculations show
that at heights above 110 to 120 km, the uncombined oxygen contained in the
atmosphere can be only atomic. Other gases in the thermosphere include
nitrogen, helium, and hydrogen.

One of the phenomena observed in the thermosphere is the aurora polaris,
a characteristic glow of the upper layers of the atmosphere due to the
corpuscular radiation of the sun. Under the action of the magnetic field of the
earth, the flow of corpuscles is deflected toward the poles and, therefore,
the aurora polaris is usually observed at high latitudes. The aurora polaris
is formed at heights of 100 to 400 km, and sometimes reaches heights of
1000 to 1200km. A study of aurorae polares may determine most of the
physical characteristics of the upper atmosphere.
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A characteristic feature of the thermosphere is the presence of a huge
amount of charged particles, ions. These ions cause the high electrical
conductivity of those sections of the thermosphere in which they occur in
their highest concentrations.

The upper layers of the atmosphere, having increased electrical
conductivity, are called the ionosphere. The ionosphere is divided into
four layers: D, E, F,, and F,. The first layer is at a height of 40 to 80 km,

It is characterized by the fact that it absorbs radio waves more intensely
than it reflects them. This is due to the sufficiently high air density at
these heights. The E,F,, and F, layers are observed, onthe average, atheights
of 100, 200, and 320 km, respectively.

The ionospheric layers are not continuous, but consist of individual
ionized clouds. The origin of the ionosphere is mainly due to the corpuscular
and ultraviolet radiations of the sun. The layers differ in the concentration
of the charged particles and in some other characteristics.

The ionospheric layers reflect some radio waves completely, and pass
some others. The latter radio waves can be used for communication with
spaceships. For example, reliable communication was established with
the first Soviet rocket to the moon on the frequencies 19,997, 19,995, 19.993
and 183,6 Mc, and with the interplanetary station ""Mars I', on the frequencies
922.76 and 183.6 Mc.

The exosphere is the uppermost layer of the atmosphere, It is charac-
terized by a temperature increase with height and a very low pressure.
Therefore, favorable conditions are created at its upper boundary for the
escape of gases from the atmosphere. This occurs when the high tempera-
ture causes the thermal velocities of individual molecules to reach and
exceed the escape velocity for the given height. As a result of this, such
molecules leave the earth's atmosphere and go into interplanetary space.
The highest rate of the dissipation is observed for light gases and the lowest
rate — for heavy gases. Thus, for example, at a temperature slightly over
700°, the time for complete dissipation of hydrogen is 4 years, and for
helium, 1.4-108 years.

Only recently a systematic study of the exosphere has begun, using
artificial earth satellites and space rockets. The first of these attempts
has already led to very interesting and important discoveries. Thus, the
experience of the first three Soviet lunar rockets established that even at
large distances, the earth is surrounded by a highly rarefied atmosphere,
consisting of an ionized gas. This part was called by Soviet scientists the
geocorona. The concentration of ions 300 km from the earth's surface is
1 to 2 million per cubic centimeter. In the geocorona it is only a few
hundred. For comparison, we recall that at the earth's surface the number
of molecules per cubic centimeter is expressed by a twenty-decimal number.

The geocorona is observed on the average up to a distance of 22,000 km
from the earth's surface. Its height depends on a number of conditions,
mainly the solar activity.

No ionized gas has been detected in interplanetary space at distances
over 22,000km. It is assumed that if there is ionized gas in interplanetary
space, its concentration would be considerably lower than several tens of
ions per cubic centimeter.

The geocorona is formed by hydrogen atoms constantly escaping the
earth's atmosphere. The escaping hydrogen is supplemented by the
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evaporation of water from the oceans, seas, and rivers. According to
calculations, the level of the World Ocean has fallen by several meters
during the geological history of the earth due to such evaporation.

Thus, the boundary of space can be considered to be 22,000 km from the
surface of the earth. However, spacecraft can make prolonged flights at
lower heights, down to 140 to 150 km, where an earth satellite can exist
for approximately 1 to 2 orbits. Apparently this height should be considered
as the lower altitude limit for space flights.

Investigations of the earth's atmosphere and of space by means of
artificial satellites and rockets led to the discovery of the radiation belts
of the earth. These are extensive zones of charged particles whose main
source is the sun. The earth is surrounded by a cloud of high-energy
charged particles, held by its magnetic field. It extends over the entire
earth and may be clearly divided into three belts: internal, external, and
a third, or as it is sometimes called, the most external (Figure 19).

~.., Plane of the earth's
+¥ magnetic equator

FIGURE 19, Meridional cross section of the radiation belts of the earth:

1- internal; 2- external; 3- most external .

The high intensity of cosmic rays in the upper layers of the atmosphere
was almost simultaneously observed by the Soviet scientist S. N. Vernov
and the American scientist Van Allen from data of instruments mounted on
satellites. Van Allen observed the internal radiation belt, but due to limited
data and the fact that the first American satellites did not reach latitudes
higher than 35° very little information on this interesting phenomenon was
obtained. The results of the measurements from the third Soviet satellite
made it possible to determine the boundaries of the internal radiation belt,
to estimate the energy of its particles, and to observe in it longitudinal
asymmetry. These resulted in conclusions on the reason for its existence.

The discovery and investigation of the external radiation belt was made
by Soviet scientists by means of the third Soviet satellite and space rockets.
The report of the Soviet scientists S.N. Vernov, A.E, Chudakov, V.1.
Krasovskii, and others, ''Investigation of the Cosmic Radiation and Magnetic
Field of the Earth and Moon, ' was awarded the Lenin Prize in 1960. The
discovery of the most external radiation belt was also made by Soviet
scientists,

What are the radiation belts? The equatorial diameter of the external
belt is about 100,000 km. Insidethis belt there is a cavity with a diameter
of about 40,000 km. The belt is symmetric with respect to the magnetic axis
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of the earth, and its meridional cross section (see Figure 19) has the form
of a sickle whose ends reach the upper layers of the atmosphere at geo-
magnetic latitudes of 50 to 60°.

The internal belt is situated within the cavity of the external belt. It
extends latitudinally approximately 40° on both sides of the magnetic equator.
Its height is from some hundreds to 5 or 6 thousand kilometers over the
earth's surface /2,13/.

The belts differ by the nature of their constituent particles: the external
belt has electrons with an energy of tens and hundreds of thousands of
electron volts, whereas the internal belt has protons with an energy of tens
and even hundreds of millions of electron volts.

The third belt of charged particles with relatively low energies is situated
approximately 40 to 80 thousand km from the earth. Electrons with an
energy from 200 to 20,000 ev have been detected in this belt. The particle
current density reaches a maximum in the center of this belt.

It is assumed that the most external belt originated from the penetration
of solar particles into the peripheral regions of the earth's magnetic field.

According to a modern hypothesis, the particles of the radiation belts
are trapped in the earth's magnetic field and move along the magnetic force
lines.

Recent investigations detected a region of increased radiation in the
southern part of the Atlantic Ocean, which is related to the magnetic anomaly
in this region. The lower boundary of the internal radiation belt descends
there to 250 to 300 km above the earth's surface.

According to the opinion of some scientists, the presence of radiation
belts is one reason for the nonuniform diurnal rotation of the earth.

It is possible to create artificial radiation belts of the earth by exploding
nuclear and thermonuclear devices in space. The nuclear devices exploded
by the USA on 20 and 30 August and on 6 September, 1958, in the southern
part of the Atlantic Ocean at a height of 480 km led to the appearance of an
artificial radiation belt between the internal and external belts. The
equatorial diameter of this radiation belt is about 16,000 km. However,
such ''scientific' experiments, carried out by the USA, hardly contribute
to the progress of astronautics.

According to the American press, a thermonuclear device, exploded in
the Pacific Ocean over Johnston Island in the summer of 1962, caused more
damage in the space near earth than the authorities admitted. The artifi-
cially produced radiation turned out to be so strong that it damaged the solar
batteries of three American satelites and discontinued radio communication
with them. The Atomic Energy Commission and the Department of Defense
concluded that the artificial radiation belt formed as the result of this
explosion is more intense than was previously assumed, and that it may
exist for many years.

The discovery of the radiation belts of the earth suggests that radiation
belts are also possible on other planets possessing a magnetic field. This
is of great importance in astronautics. The paths of spaceships should
normally pass outside zones with intensive cosmic radiation. The existence
of radiationless zones at the poles enables spaceships to leave the earth and
return to it from interplanetary space.

One may get an idea of the radiational danger in a space flight near the
surface of the earth under the lower radiation belt from the magnitude of




the total radiation dose received by our first astronauts during their flights.
These doses are given by the following figures /42, 43/ (in millirads*):

Yu.A.Gagarin . oo vi i e 1
G.S.TitOV. s o v e v et v vn e s oot naaosanson 10
A.G.Nikolaev . .. .. i vanv e osorevanann 43
P.R.Popovich.......... o v 32
V.E.Bykovskii o .o vvvv i i iii i 50
V.V.Tereshkova .. .. ..o v v ve v v v i ceanen 30

.

These doses are very small, In fact, the first indications of radiation
sickness which do not affect work capacity appear in man when the radiation
dose reaches 45 to 90 rad. Severe radiation sickness begins at a dose of
90 to 180 rad /4/. A man normally receives a radiation dose of approxi-
mately 0.3 rad in chest irradiation. If the irradiation is received from
mobile X-ray equipment, the radiation dose is 2 to 9 rad. The annual
radiation dose received by a man from the luminous dial of a wristwatch
(at a distance of 0.3 m) is about 0.00004 rad. From the instrument panel
in an airplane cabin, containing up to a hundred luminous instruments, the
pilot receives an annual dose of up to 0.0013 rad /35/.

§5. Basic Physical Characteristics of the Moon and the
Peculiarities of its Motion

The moon, earth's natural satellite, is the large celestial body nearest
to us, and is denoted by the symbol (.

The mean distance from the earth to the moon is 384,400 km, which is
60.27 radii of the earth. The diameter of the moon is 3473.4 km (0.27 of the
diameter of the earth), its mass, 7.35:10%5g (0.01 of the mass of the earth).
The volume of the moon is only 0.02 of the volume of the earth, and its
density is 3.34 g/cm?3 (0.606 of the density of the earth). Therefore, the
gravitational acceleration, and hence the weight of every object on the moon
is one sixth of that on the earth, The zero-height circular velocity for the
moon is 1.68km/sec, and the escape velocity is 2.36 km/sec.

The eccentricity of the lunar orbit is small, averaging 0.0549. The
lunar orbit can therefore be considered practically circular. The inclina-
tion of the lunar orbit,is, on the average, 5°09' and the mean velocity of
the moon in its orbit is 1.02 km/sec.

The period of one revolution of the moon around the earth is called the
lunar month. The time interval during which the moon reaches its original
position with respect to the stars after one revolution is called stellar or
sidereal month. The time interval during which the moon reaches its
original position with respect to the sun, is called synodic month. The
motions of the sun and moon as seen from the earth are in the same direc-
tion, but since the moon moves faster than the sun, the synodic month is
longer than the sidereal month. The first is equal on the average to 29 days
12 hrs 44 min and 2.78sec, the second, 27days 7Thrs 43 min and 11.5 sec.

* A rad is a radiation unit corresponding to the absorption of 100 ergsin 1g of tissue. A millirad is one
thousandth of a rad. One rad is equal to 1.12r (roentgen).
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The attraction of the sun, the nonsphericity of the earth, and, to a
much lesser extent, the attraction of the planets, give rise to complicated
perturbations, or inequalities, in the motion of the moon. The perturba-
tions are manifested in the continuous variation of the elements of the lunar
orbit. At the end of the past century, Brown, an Americanscientist, counted
751 inequalities. Of these numerous inequalities we shall mention only the
principal four.

1. Regression (backward motion) of the line of nodes.
The line of nodes of the lunar orbit rotates in the plane of the ecliptic in a :
direction opposite to the motion of the moon along its orbit. The nodes
move in the ecliptic by 19.3° per year, as a result of which, in 18.6 years
they make a complete rotation with respect to the pole of the ecliptic. Thus
the moon has a new path among the stars each month.

2. Direct motion of the line of apsides. Theellipse of the
lunar orbit rotates in its plane so that the line of the apsides turns in the
same direction as the moon. This rotation has a rate of 40.7° per year,
making a complete rotation in 8.85 years.

3. Periodic oscillations of the inclination. The inclination
of the plane of the lunar orbit to the ecliptic varies from 4°59' to 5°17' with
a period of 18. 6 years.

4. Periodic oscillations of the eccentricity. The eccen-
tricity varies from 0.0435 to 0.0715 with a period of 8.85 years. This is
also the period of the variation of the semimajor axis of the lunar orbit
from 356,400 to 406,730 km.

The inequalities in the motion of the moon lead to highly complicated
formulas for the calculation of its coordinates on the celestial sphere. Thus,
according to Brown's theory, the longitude of the moon in the ecliptic
coordinate system is given by an equation containing 665 terms, and the
latitude is given by an equation containing more than 300 terms.

The complicated character of the lunar motion suggests the difficulties
which scientists encounter when choosing and calculating flight trajectories
for automatic stations and lunar spacecraft to and about the moon.

It is believed that the moon once had a dense atmosphere, but that since
the escape vclocity for the moon is low, the thermal velocity of individual
molecules of the atmosphere became equal to or exceeded it and such
molecules left the moon forever. The lower the escape velocity, the faster
a heavenly body loses its atmosphere, or, as is said, the faster the dissipa-
tion. For this reason, the moon is practically devoid of an atmosphere,
even though the ages of the earth and of the moon are the same in the opinion
of scientists,

According to the latest data, the density of the atmosphere at the surface
of the moon is 2.107!3 of the density of the lower layers of the earth's
atmosphere. There is no water on the moon,

The extreme rarefaction of the lunar atmosphere deprives the moon of
the protecting shell in which meteorites burn out and are pulverized, and
therefore the lunar surface is continually bombarded by meteorites.

Since the moon has practically no atmosphere it is not possible to use
the braking property of the atmosphere to reduce the velocity of a spaceship
for landing on the moon. To accomplish this, quite powerful braking engines
will apparently be required.
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From the data of space rockets, Soviet scientists have established that
the moon does not have any noticeable magnetic field, and consequently,
no radiation belts.

The surface of the moon has been quite well studied. However, the
period of rotation about its axis is equal to the period of one complete
revolution around the earth (i.e., is equal to a sidereal month), and there-
fore only half of the lunar sphere is ever seen from the earth. *

The science studying the surface of the moon is called selenography
(from selena, the ancient name of the moon). Detailed maps of the visible
part of the moon exist on which over 200,000 details of the lunar surface
have been plotted. Of these, more than 32,000 details have been named.
All formations having a diameter of more than 50 m are now drawn on the
map of the visible side of the moon.

FIGURE 20. Photograph of part of the lunar surface from the
crater Copernicus (in the center)

A characteristic feature of the lunar surface is the annular mountains or
craters (Figure 20). The largest crater Grimaldi has a diameter of 235 km,
and the smallest distinguishable in modern telescopes is 100 to 200 m in

® Actually, about 60% of the entire surface of the moon is seen from the earth due to the phenomenon of
libration, a slow tilting of the moon with respect to some average position as a result of the ellipticity of
its orbit, the slight inclination of its rotational axis to the plane of the orbit (1°32'), and some nonuniformity
of the rotation about its axis.
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diameter. The height of the annular banks of the craters reaches 300 to
7000 m. Sometimes a sharp-edged mountain, called a central peak, rises
in the center of the crater. Even the unaided eye sees large dark spots of
circular form on the surface of the moon, which are the wide plains called
"seas." In addition, there are mountain ridges whose height reaches 7 to
8 km; one mountain top is 9 km high.

A system of bright rays, diverging in all directions from some craters
(Tycho, Kepler, and others), is seen on the lunar surface. These rays
are several kilometers wide and intersect mountains and seas, sometimes
extending to distances of up to 5000 km. Furrows and black fissures,
probably quite deep, are seen in many places on the lunar surface. A
fissure of average dimensions extends 100 km, and is several hundred
meters wide and deep.

The reasons for these characteristic features of the lunar topography
are not clear yet, but two basic hypotheses exist on the formation of the
annular mountains. According to the first hypothesis, the annular moun-
tains are the result of grandiose eruptions of gases which once escaped
from the interior of the moon. According to the second, their origin is due
to the bombardment of the lunar surface by large meteorites.

Quite recently, the amateur astronomer M. M. Shemyakin noticed an
interesting regularity in the positions of the lunar craters. Some crater
chains lie along a line close to an arc of a circle, and the area of eachcrater
is half the area of the previous one. The distance between them was also
found to obey a certain mathematical law. It is hoped that this discovery will
aid scientists to understand the secret of the origin of the lunar craters.

In recent years, astronomers have often observed various changes
occurringon the surface of the moon. Thus, for example, in the last few
years the area of the crater Linné decreased by a factor of two. The crater
Algazen disappeared, leaving no traces; small craters formed on the bottom
of the crater Plato, and new, hitherto unobserved fissures have been
observed near the crater Messier. On the bottom of the crater Plato,
green-grayish spots of an unknownorigin appear atsunrise, and in the crater
Eratosthenes these spots even appear tobe moving /5/.

Thus, powerful processes take place on the lunar surface and in its
interior, but their character and causes are as yet unknown, A detailed
investigation by spaceships of the topography of the lunar side visible from
the earth will make it possible to obtain new data on this problem,

On 4 October, 1959 the third Soviet cosmic rocket was launched in the
direction of the moon. The automatic interplanetary station, especially
built for photographing the opposite side of the moon, orbited the moon
and, according to a precomputed program, photographed it. The images
obtained were transmitted to the earth via a special radioengineering
system.,

The time chosen for the photographing made it possible to obtain pictures
of that part of the lunar surface invisible from the earth and of a small area
with known formations. The photographs of a part of the known region of the
moon allowed us to compare unobserved features on the opposite side of the
moon to those already known and in this way determine their selenographic
coordinates.

Analysis of the photographs shows that mountainous regions prevail on
the invisible part of the lunar surface, but there are very few seas similar
to those of the visible part. The pictures obtained of the opposite side of
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the moon enabled the first Russian atlas of the lunar surface and a lunar
globe. The optical reflections of the moon indicate that the lunar surface
is irregular. It is covered all over, including the plains, by numerous
irregularities, which cannot be seen from great distances. Until recently,
it was assumed that the lunar surface is covered by a dust layer from
several centimeters to tens of centimeters thick. However, according to
the latest data, the surface of the moon is a very light porous substance.
This fact was established as a result of the analysis of radio emissions of
the moon and was confirmed by calculations. It was established, for
example, that from 1.72 to 86 kg of meteorite dust falls annually on each
square kilometer of the earth's surface, and about 0.34 kg should fall
annually on each square kilometer of the lunar surface. This amount of
dust, uniformly distributed over the lunar surface, produces a 1cm layer
after 100 million years. If we take into account that the age of the rocks
forming the surface of the moon is 500 million years, then the dust layer
on the surface of the moon should be about 5 cm thick. However, the exis-
tence of a dust layer on the moon is now denied by a number of scientists.

Some scientists assume that the moon has a hot core in order to explain
the temperature rise discovered in the deep layers of the moon. Due to the
absence of an atmosphere, three times the amount of solar radiation falls
on a unit area of the lunar surface as on a unit area of the earth's surface.

During the two-week lunar day the surface of the moon, illuminated
by the solar rays, reaches a comparatively high temperature, and
during the long lunar night becomes extremely cold, due to the absence
of a protecting layer such as the atmosphere which preserves the
heat on the earth during the night. Thus, it can be affirmed in advance
that the temperature of the lunar surface undergoes extremely sharp
variations. To date the temperature in various places of the lunar surface
has been measured quite accurately.

Measurements carried out in one of the observatories made it possible
to obtain the following figures. The temperature in the central parts of the
full moon disk, i.e., at a point in direct sunlight, was found to be 134°C,

In the middle, between the center and edge of the lunar disk, it is 122°C,
at adistanceof 0.75 r [r = radius of the moon] from the center of the lunar
disk, 102°C, at adistanceof0.9r,77°C, and at the very edge of the disk,
67°C. Theoretical values closely approximate these. The temperature of
the night side of the moon is about =150°C.

The second Soviet cosmic rocket sent to the moon, on which nine counters
to measure the radiation level near the moon were mounted, established
that the moon does not have radiation belts similar to the earth.

These are in general the unfavorable conditions which man will encounter
on the moon,

Much about the moon is now definitely known, but the rest is, for the time
being, pure guesswork. No doubt that the further development of science and
engineering as a whole, as well as the further progress of astronautics, will
considerably add to our knowledge of the moon.

The moon is the celestial body closest to the earth, and therefore it is
obvious that in the near future, manned spaceships will be directed to it
for a detailed study.
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§6. The Inferior Planets

The planets of the solar system whose orbits lie within the orbit of the
earth are called the inferior planets, and those outside, the superior
planets. There are two inferior planets, Mercury and Venus.

The conventional designation of the planet Mercury is 3.

The equatorial diameter of Mercury is 4720 km, 0.37 of the earth's
diameter. Its volume is 0.050, and its mass 0,037 of the mass of the earth.
Its average density is 4.1 g/cm3 (0.74 of the average density of the earth).
The gravitational acceleration on the surface of Mercury is 2.55 m/sec?,
which is 0.26 of the gravitational acceleration on the surface of the earth.
The zero-height circular velocity for the surface of Mercury is about
2.7km/sec, and the escape velocity at the surface is 3.8km/sec.

The distance of Mercury from the sun varies widely from 46 to 70 million km,
the meanbeing 57.9 million km. The eccentricity of the orbitis almost 0,206.
The distance from the earthto Mercury varies from 82 to 217 million km. Its
relatively smalldistance from the sunis the reason for the very hightempera -
ture ontheilluminated part of its surface, The temperature at apointindirect
sunlightis+412°C. This practically corresponds to the melting point of zinc.

The mean linear velocity of Mercury in its orbit is 47.83 km/sec, the
sidereal revolution period is 87.97 days, and the mean synodic period is
115.88 days. The inclination of the orbit is 7°00' 14", and the period of
rotation about its axis is 87 days 23 hrs 16 min. The period of Mercury's
rotation about its axis is equal to the period of its revolution around the
sun, and consequently Mercury always keeps the same side facing the sun,
as the moon does to the earth. The inclination of Mercury's equator to the
plane of its orbit is unknown,

Similar to the moon, Mercury has phases. The study of its spectrum
leads one to assume that the atmosphere of Mercury is extremely rarefied.
Mercury does not have any satellites,

The second inferior planet is Venus. Its conventional designation is Q.

Venus resembles the earth in many respects. Its equatorial diameter
is 12,374 km, which amounts to 0.97 of the equatorial diameter of the earth.
Its mass is 0.826 of the mass of the earth, its volume 0.90 of the volume
of the earth, and its average density 5.1 g/ecm? (0.92 of the average density
of the earth).

The gravitational acceleration on the surface of Venus is 8.83 m/sec?,
which is 0.90 of the earth's gravitational acceleration. A man who weighs
70 kg on the earth will weigh slightly less than 63 kg on Venus. The zero-
height circular velocity for Venus' surface is 7.2 km/sec, and the escape
velocity at the surface is 10.2 km/sec.

The mean distance of Venus from the sun is 108.1 million km; its orbit
has the smallest eccentricity of all the planets of the solar system, 0.007.
The minimum distance from the earth to Venus is only 40 million km.
Similar to the moon and Mercury, Venus has phases. Venus is nearer to
the sun than the earth, and therefore receives from it slightly over twice
as much heat and light as does the earth. Venus does not have any satellites.

The mean linear velocity of Venus in its orbit is 34.99 km/sec, and the
angular velocity, 1°36' per day. The sidereal period of revolution is
224.7 days and the mean synodical period is 583.92 days. The inclination
of the orbit is 3°23'39", and the inclination of the equator to the plane of
the orbit is not known accurately.
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A temperature of =23°C has been measured on the dark part of Venus
/27/. According to radar measurements in the USSR and the measurements
of the American space probe "Mariner II', the temperature of the external
part of the Venusian atmosphere is about 600°C. This proves that Venus
cannot always turn the same side to the sun, for its night hemisphere would
then be colder.

In spite of its relative closeness to the earth, Venus hideson it many
riddles. To this day it is still unknown what the rotational velocity of Venus
is and what is the length of its day. The reason for this doubt is that the
surface of the planet is covered by a thick layer of clouds and a direct
determination ofits rotational period by topographical details is therefore
impossible. Indirect methods of determining the rotational period lead
to highly contradicting results. According to the results of the radar
measurements by the Soviet scientists, made in 1961, the rotational period
of Venus was close to 11 terrestrial days. In 1963 the Soviet scientists
A.D.Kuz'min and A, E, Salomonovich presented the astronomical journal of
the Academy of Sciences of the USSR (Vol.XL, issue 1) with the following
data, '"The true (stellar) rotational period of Venus is 69 terrestrial days
and the solar period is 98 days. These data were obtained from analysis
of the radio emission of Venus in the millimetric and centimetric wave
bands."

Venus has a dense atmosphere whose existence was for the first time
proved by M, V. Lomonosov from analysis of the rare phenomenon observed
by him on 26 May, 1761 — the passage of Venus over the solar disk. Until
recently, neither oxygen nor water vapor had been observed in the atmos-
phere of Venus. Only considerable amounts of carbon dioxide and traces
of nitrogen and its compounds with oxygen were seen. The absence of free
oxygen in the Venusian atmosphere indicates the absence of a thick vegeta-
tion. It is assumed that the conditions on Venus are close to those which
existed on the earth before life appeared on it.

Recently a report appeared in the Soviet press that molecular oxygen
has been detected in the upper layers of the Venusian atmosphere. This
discovery was made by V.K. Prokof'ev of the Crimean Astrophysical Obser-
vatory on the basis of unique spectra of Venus, obtained on a large solar
telescope and a special spectrograph.

It is thus now established that there is carbon dioxide, oxygen, and
nitrogen in the Venusian atmosphere. The presence of nitrogen was
discovered by analysis of the spectrum of the night-sky glow of Venus,
obtained by the Soviet astronomer N.A.Kozyrev. This fact compels us to
approach the problem of life on Venus in a new way; it is now assumed that
organic life exists on this planet.

By means of modern telescopes it is possible to distinguish details
approximately 12 km wide on the surface of Venus, but in view of the dense
cloud cover, we do not know the topography of Venus. However, some
scientists believe that the surface of this planet is covered by a continuous
ocean.

In view of its relative closeness, Venus is a very tempting object for
investigation by spacecraft.
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§7. The Superior Planets

The superior planets of the solar system in the order of their distance
from the sun are: Mars, Jupiter, Saturn, Uranus, Neptune, Pluto. The
conventional notation of the superior planets is: Mars— &, Jupiter— %, Saturn
— % ,Uranus — % Neptune — ¥ and Pluto —R (PL). The physical charac-
teristics of these planets and the elements of their orbits are given in
Tables 2 and 3.

TABLE 2. Physical characteristics of the superior planets of the solar system

, " | Cosmic vel- 2
. LI Qs -
Eunatonal Density B ? ociries for | & §.
diameter 0 *.| the surface, | &
S8l P | 2
Name - IR m/sec s s
! = 5 v £ °
of o 40 - - I 52 o 5
k=1 = o
planet £ 5 ° ! s |2s|E2% » =2 2%
= g & 3] S z|T8]es 2 Y
—_ - 5 » ~ ; o} ° [ a o s =
! g 5 3 g |l >®|sg|[221g8lEg | =
10 z = S (w8 |82 828525 | £¢2
Mars 0.54 6,889 1105 0,167 0.108(0.69} 3.8 3,731 3,54 | 5,0 {+30° 25°10"
Jupiter |[11,14 |142 113|1:16 [1,295 314.8 0,25] 1,38125,9 (48,5 61,0 |- 140° 3°01°
Saturn 9.4 |119,915(1:11 745 95.2 0,13/ 0,72111,09 |26.0 36,7 |- 150° | 26°45°
Uranus 4,0 51,028(1:19 63 14,6 0,23 1.3 8,24 [15.3 21,6 |- 180° | 98°00°
Neptune| 4.3 54,885 1:40 18 11,8 0.22]1,2 [11,18 |17,0 ]23.8 [-210°| 29°36’
Pluto 0.46 5,870 ? 0,098 <1 H H ? ? ? -220° ?

* Disregarding the centrifugal force, On Jupiter's equator the gravitational force is reduced by 9%, on
Saturn's equator, by 16%,

Of the superior planets the most studied is Mars. As the eccentricity
of its orbit is relatively large, the distance from Mars to the sun varies
within wide limits — from 206.6 million km to 249 million km. The distance
from the earth to Mars varies from 55.5 million km to 400 million km.
Mars is nearest to the earth at the time of oppositions, which occurs
approximately every two years. Every 15 or 17 years Mars is in so-called
great opposition, when opposition and perihelion nearly coincide. For this
reason it comes particularly close to the earth. The last great opposition
of Mars was in 1956; the next will be in 1971,

The Martian days, as seen from Table 3, are only slightly longer than
the terrestrial ones. The inclination of Mars' axis to the plane of its orbit
is almost the same as that of the earth (about 65°), and therefore the annual
change of seasons on Mars and the illumination conditions in different
seasons are approximately the same as on the earth, but the Martian year is
almost twice as long as the terrestrial one, and due to its remoteness from
the sun, Mars receives only from 36 to 52% of the light and heat which the
earth receives,

The science studying the surface of Mars is called areography.* Many
stable details are observed on its surface which make it possible to draw a

* From the Greek name of Mars — Ares,
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quite detailed aerographical map. The smallest of the details on the
Martian surface observable from the earth with a modern telescope is about
16 km wide,

Investigations have shown that there areno large mountains on Mars, its
surface is very smooth and even. If there are elevations, they are not
mountains, but rather plateaus with a height of no more than 1000 m. Four
types of large surface details are observed on the disk of Mars: polar caps,
"seas," 'continents, ' and "canals" (Figure 21),

The polar caps are white spots on the poles of the planet. These forma-
tions are highly variable; they decrease with the arrival of the Martian
summer and increase in winter. The polar caps are possibly a thin ice crust
only several centimeters thick /27/,

If the polar ice of Mars were melted, all the resulting water would
constitute a lake no greater than Lake Lagoda.* Water has also been ]
observed in the Martian atmosphere. If there are open water basins in the
equatorial regions of the Martian surface, then, according to some calcula-
tions, their diameter does not exceed 300 m.

The Martian '"'seas'' are darker than the whole surface of Mars, their
dimensions and color depend on the Martian season.

The ''continents' are huge formations on the Martian surface, reddish-
orange in color, extending over approximately two thirds of its surface.
Most probably, these are deserts with a soil stained by ferric oxides.

The Martian '"canals' are regular thin lines intersecting the reddish
surface of the "continents" and "seas." The Martian canals were
discovered by the Italian astronomer Sciaparelli in 1877 during one of the
great oppositions of Mars. He is the one who proposed the idea that the
network of the Martian canals, striking by its rectilinearity, is a gigantic
irrigation system, constructed by intelligent inhabitants., Later, at the
intersection places of the canals enigmatic dark circular spots, oases,
were discovered. As many as seventeen canals converge into some of
the oases. Seasonal variations of the canals have also been observed.
With the arrival of the Martian winter, the canals become faded and many
of them completely disappear. At the beginning of the spring they reappear,
First the canals which are situated close to the thawing polar cap become
noticeable followed by the more remote ones. The darkening of the canals
goes from the pole to the equator. In the equatorial belt of Mars, where
one darkening is replaced by another, the canals are always visible,

In 1924 scientists succeeded in photographing the canals of Mars and
making the first photomap. In 1939 hundreds of photographs of Mars were
obtained on which about 500 canals were observed. The total number of
canals discovered exceeds 1000. The photographs also showed seasonal
variations of the canals.

Some scientists assume that there is vegetation on Mars. The opponents
of this assumption refute this possibility with a series of quite convincing
arguments. For example, the green pigment of terrestrial plants very
strongly scatters infrared rays, and those places on Mars which were con-
sidered a plant cover do not display this property. The spectrum of the
terrestrial green is characterized by a wide dark band in the extreme red
rays, the absorption band of chlorophyll, which is not observed in the spec-
trum of Mars.

* [Lake Lagoda has an area of about 7000 sq. m. ]
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The Soviet scientist G. A. Tikhov, studying terrestrial plants in severe
high-mountain conditions, i.e., in temperature conditions approaching
Martian conditions, succeeded in proving that by prolonged adaptation, the
vegetation of Mars could acquire properties other than those known of the
terrestrial flora. The study of the Martian vegetation marked the birth of
a new science — astrobotanics,

An atmosphere is observed on Mars, but the atmospheric pressure at
the surface is small, from 100 to 200 mm. This pressure is observed on
the earth at a height of 15 to 20km. The composition of the Martian
atmosphere has not been accurately established. However, much nitrogen
and some carbon dioxide have been observed. As a result of observations
of Mars and the study of spectrograms, Professor N.A. Kozyrev succeeded
in proving the existence of water in the form of ice and snow.

The lower gravitational acceleration on the surface of Mars as compared
with the earth leads to an interesting phenomenon. The pressure and density
of the atmosphere fall off more slowly with increasing height than on the
earth. At a height of approximately 25 km, the pressure of the Martian
atmosphere is equal to the pressure of the terrestrial atmosphere at this
level, At large heights the pressure and density of the Martian atmosphere
exceed those of the terrestrial atmosphere. Consequently, spaceships
flying to Mars will experience a stronger deceleration in the upper layers
of the Martian atmosphere than in the upper layers of the terrestrial atmos~
sphere, and therefore the descent to the surface of Mars will differ from
the descent to the earth.

From photographs of Mars made during the opposition of 1939, Professor
N.N. Sytinskaya obtained the following data on the Martian atmosphere. The
total mass of gas per unit area of the Martian surface is .22 times that on
earth. A mercury barometer on the surface of Mars would show a pressure
of 170 mm of Hg,’ and an aneroid barometer (whose readings depend not only
on the amount of gas, but also on the gravitational force), only 65 mm of Hg,
At this pressure, water boils at 43°C.

The climate of Mars is more severe than that of the earth. This is due
to extreme rarefaction of the atmosphere and the greater distance of Mars
from the sun. On the equator of Mars at about midday, the temperature
reaches 5 to 20°C. At night the temperature falls below 0° and at dawn
reaches —46°C, In winter, near the southern pole, the temperature is
thought to be —60°C,

Mars has two satellites, discovered in 1877 by the astronomer Hall.

The nearest satellite, Phobos, has a diameter of only 16 km, It completes
a revolution around the planet in 7hrs 39 min 14 sec, i.e., its rotation is
considerably faster than the rotation of Mars about its axis, and therefore
Phobos rises above the horizon of a Martian observer on the west, moves
against the diurnal motion of the stars and sets in the east. Such a
motion of a planet's satellite is at present the only known case in the
solar system. The mean distance of Phobos from the surface of Mars is
9376 km. The second satellite, Deimos, has an even smaller diameter,
only 8 km. The distance from the center of the planetto Deimos is 23,500 km.

After analyzing the motion of the Martian satellites, the Soviet scientist
1. S. Shklovskii suggested that they are of artificial origin,

It is clear that, like the moon and Venus, Mars will soon be an object
for study of automatic interplanetary stations, and later of spaceships.
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The beginning of this study was set by the launching of the Soviet automatic
interplanetary station '""Mars I''on 1 November, 1962.

The planets Jupiter, Saturn, Uranus, and Neptune have huge dimensions
as compared with the earth. They are called giant planets. The most
massive of them is Jupiter. Its mass is 318 times, and its volume 1300
times the mass and volume of the earth, but the average density is almost
one-fourth the density of the earth. Varying belts, parallel to the equator,
which were later recognized to be clouds, have been observed on the surface
of Jupiter.

By spectral analysis, it has been established that the atmospheres of all
the four giant planets consists of ammonia and methane (marsh gas). The
temperature of Jupiter's atmosphere is very low (from —100 to ~140°C).

Jupiter rotates very rapidly about its axis, not as a solid body, but by
"zones.'" Each zone has its own rotational velocity. Jupiter's axis of rota-
tion is almost perpendicular to the plane of its orbit, and therefore there
is essentially no change of seasons on this planet.

Jupiter and the other giant planets are covered by dense clouds, and
hence reliable data on the character of their surfaces and their internal
structure are not available. It is most probable that a thick layer of ice
and frozen gases lies under the cloud cover of these planets, and that the
internal part is a solid nucleus. The low average density of the planets is
apparently due to their extensive atmosphere. It is also assumed that the
giant planets contain much hydrogen.

At present, 12 satellites of Jupiter are known. The names and relative
dimensions of the satellites are shown in Figure 22,

On Saturn, cloud belts are less noticeable. Their color is mainly brown.
Saturn is the second largest planet. The form of the planet in a telescope,
the temperature of its atmosphere, and its rotation indicate that the physical
structure of the two largest planets is almost identical. The axis of rotation
of Saturn is inclined at an angle of 63° to the plane of its orbit, and therefore
Saturn shows a change of seasons.

The peculiarity of Saturn is its ring, being a unique formation in the
entire solar system. The ring is situated in the plane of the planet's equator
but does not touch the planet. Its dimensions are tremendous: the external
radius of the ring is 137.5 thousand km, which is 2.3 radii of the planet;
the thickness of the ring is not more than 15 to 20km. * It is assumed that
the ring has a meteorite structure. The sizes of the ring particles vary
from tenths of a micron to tens of centimeters.

Through strong telescopes the ring is seen to consist of two parts. The
interval between the rings is about 5000 km. The mass of Saturn's ring is
estimated to be 1/27,000 of Saturn's mass.

Nine satellites of Saturn are known (see Figure 22). The satellites are
situated at distances from 185,000km to 12.9 million km from the center of
the planet.

On the greenish disk of Uranus, it is almost impossible to distinguish
any details. The axis of rotation of Uranus is inclined to the plane of its
orbit at an angle of only about 3°. This leads to a very strange and unique
phenomenon in the solar system. Uranus always revolves around the sun
almost "lying on the side."” As a result there is a very peculiar change of
seasons, and the '""day'' and ''night'' may last for several years. Five
satellites of Uranus are known,

¢ According to other data the thickness of Saturn's ring is considerably smaller,
8 g y
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FIGURE 21, Appearance of Mars on a color photograph



It is also impossible to distinguish any details or spots on the disks of
Neptune and Pluto, discovered in 1830, and we still know very little about
these planets.
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FIGURE 22, Relative dimensions of the satellites of
the planets

Flight to the superior giant planets is a remote prospect. Its accom-
plishment requires, first of all, the development of engines capable of
giving the spaceship considerably higher velocities than may be achieved at
present. However, this is not the only difficulty preventing flights to the
giant planets., Such a flight requires overcoming the belt of minor planets,
the asteroids.* The return flight requires tremendous energy expenditures,
as the escape velocity for the nearest of the giant planets, Jupiter, is
61km/sec, about 5 times that for the earth. Trajectory correction and the
necessity to transmit scientific information from such spaceships to the
earthrequires the development of super-long-distance space-communication
systems. In addition, it is necessary to develop methods for protecting

* The asteroids are discussed in the next section.
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the astronauts from the extremely low temperatures on the surface of these
planets and from what is perhaps more complicated, the tremendous gravi-
tational force. The gravity acceleration on the surface of Jupiter is

25.9 m/sec?, A 70-kg astronaut will weigh on the surface of this planet
almost 186 kg!

However fantastic the achievements of science and engineering, however
great their possibilities, it is hardly possible to expect that man will visit
these planets. Apparently, they will be studied only by means of automatic
interplanetary stations and automatic stations with scientific instruments
landed on their surface. However, this too is a very interesting and
complicated scientific and engineering problem.

These are in short the characteristics of the superior planets of the solar
system,

§8. Minor Planets (Asteroids), Comets, Meteor Streams,
and Meteors.

The orbits of the minor planets, or asteroids, lie mainly between the
orbits of Mars and Jupiter, although some of them, for example Hermes,
approach the orbit of Venus at perihelion, and others (Icarus) even intersect
the orbit of Mercury (Figure 23). Most of the minor planets are about
2.5 a.u. from the sun.

FIGURE 23. Orbits of some minor planets (asteroids)

By 1 January, 1953, 1586 minor planets were known. It is assumed that
their total number exceeds 50,000. For the overwhelming majority of the
minor planets, the orbit eccentricity is small, but in the case of some the
eccentricity is very large (for example 0.83 in the case of Icarus).

The largest of the minor planets, Ceres, is 770 km in diameter has a
mass approximately 1/8000 of the mass of the earth, and the smallest of
the known minor planets have a diameter of about 1 km and, by their
dimensions, approach the large meteorites (Figure 24).
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The short-period oscillations of the luminosity of many minor planets
indicate that they rotate and that they have an irregular geometric form.

Some minor planets approach closer to the earth than all the other
celestial bodies, excluding the moon. Thus, Hermes reaches only
600,000 km from the earth, Apollo, 5,000,000 km,
Amur, 15,000,000km, and Eros, 23,000,000 km.
These and some other asteroids may serve in
the near future as objects of study by means
of automatic interplanetary stations.

Comets are the most astonishing members
of the solar system. Their geometrical
dimensions are very large, sometimes even
larger than the sun. Comet tails extend over
many hundred million kilometers. (In the
case of one of the observed comets, the tail
FIGURE 24. Dimensions of some  €Xtended over 900,000,000 km.) The mass of
large asteroids as compared with comets is small, and therefore their density
the moon is negligible. The mass of the most '""massive"

comet does not exceed 107! of the mass of the
earth, and its nucleus has a diameter equal to several tens of kilometers.

According to the latest data, the densest part of a comet, its nucleus,
constitutes a single body of small dimensions. It contains stony and ferrous
materials, as well as gases (methane, ammonia, carbon dioxide, cyanogen,
and others) in the solid state.

Comet orbits have, as a rule, large eccentricities, as well as large
inclinations to the plane of the ecliptic. Comets move both in the direction
of the general motion of the planets, and in the inverse direction. Their
revolution periods around the sun are also diverse. Forty comets with
periods from 3 to 76 years are known, and about 40 comets with periods of
about 200 years.

Meteors, or falling stars, are seen as visual phenomena in the earth's
atmosphere, flashes caused by small particles, meteoric bodies, entering
the atmosphere of the earth at huge velocities. These velocities at the
moment of encounter with the earth's atmosphere relative to the moving
earth vary from 13 to 70 km/sec. Heated by the friction with the air, the
meteoric bodies become incandescent and pulverize in the atmosphere. The
glow occurs mainly at heights of 50 to 130 km from the earth's surface.

The earth encounters, in 24 hours, 75 million meteors which are visible
at night to the unaided eye. The total number of meteors, including the
faintest, apparently amounts to hundreds of billions.

If the meteor is sufficiently large, it produces in the atmosphere a very
rare phenomenon called a bolide. A bolide is observed in the form of a
large brightly luminous sphere with a long trail. When the meteor has
considerable mass and relatively low velocity of encounter with the earth,
the mass of the meteor has no time to disintegrate completely in the air.
The remaining part of the meteor falling to the surface of the earth is called
a meteorite,

It had been thought that not more than 1000 tons of meteoric material
falls annually on the surface of the earth. Data obtained from artificial
earth satellites made it possible to conclude that the daily ""dose'’ of
meteoric material arriving at the surface of the earth is considerably larger,
equal to about 30,000,000 tons.
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When the earth's orbit intersects the orbit of a shower of meteoric
particles, one observes a meteor stream. The particles forming the
meteor showers move in elliptical orbits around the sun. The origin of
these showers is connected with the disintegration and scattering of comets
in space.

Some meteor-shower orbits are known and have been studied (Table 4).

TABLE 4. Some data on the basic constants of meteor streans

Particle velocity | Hourly number of
Stream Date o.f sream with respect to the | meteors at the
maximum )
earth, km/sec maximum
Quadrantids 3 January 42.4 40
Lyrids 22 April 49,1 10
v - Aquarids 4 May 67.0 36
B -Cassiopeids 27 July — —
3 -Aquarids 30 July 43,0 14
a -Capricornids 1 August 25.1 —
Perseids 12 August 60.3 55
Orionids 22 October 67.8 10
Southern Taurids 1 November 30,‘2} 6
Northern Taurids 8 November 31,5
Leonids 19 November 7.7 8
Geminids 13 December 36.4 60
Ursids 22 December 31,2 10~20

The major planets, mainly Jupiter, exert a disturbing influence on
meteors, modifying their orbits. This may cause the earth to miss some
of the previously known meteor showers and, on the contrary, to meet with
a previously unobserved shower.

In recent years, radar has been used for observing meteors and meteor
streams. As a result some new meteor streams have beendiscovered.

Besides meteor streams, single meteors, called sporadic meteors, are
also encountered.

Meteors are a serious hazard for spaceships. Sporadic meteors whose
paths cannot be taken into account in choosing and calculating the trajectory
of a spaceship are a particular danger. Encounter with meteors may result
in destruction of the hermetic sealing of the cabin and damage to the ship's
equipment,

According to recent data, the velocities of meteoric particles within the
solar system reach 50 to 75 km/sec.

The masses and dimensions of meteoric bodies vary from microdust
particles to meter-size chunks of stone or metal. The average density of
meteoric particles, according to the opinion of some scientists, is 3 to
3.4g/cm?,

The meteor danger in a space flight is estimated by the probability of
the spaceship encountering meteors of a given mass and by the piercing
power of the meteors. The mean time, in seconds, betweentwo successive
encounters of a spaceship with meteors of a mass equal to or larger than
M can be determined by the formula /28/

t=20.101 M _
SVay
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where M is the mass of the meteor, in g; S is the area of the midship cross
section, inm? V,y is the average meteor velocity, equal to 30,000 to 50,000
m/sec.

For example, if we take a comparatively small cross section of the
spaceship, 1 m?2, then the probability of the spaceship encountering meteors
of various masses will be; with meteors of mass 2.5 - 1079 g and more, once
in 1.5 days; with meteors of mass 2.5 -10~7 g and more, once in 5 months;
with meteors of mass 2.5-107%g and more, once in 39 years.

The probability of encountering larger meteors is negligibly small. A
spaceship with the cross-sectional area of 1 m? may encounter a meteor of
a diameter of 1 mm once in 2500 years, and a meteor of a diameter
of 5mm, once in 330,000 years. As the cross-sectional area of the space-
ship S increases the probability of encounter with meteors increases, and
the time interval between two successive encounters with meteors of the
same mass decreases, as seen from the formula.

The penetration depth of meteors into the metallic shell of a spaceship
is 8 to 20 diameters of the meteor. Appreciable destructions of the shell
can be caused by meteors with a mass not less than 2.5-1077 to 2.5: 1075 g,
but, as was already said above, the probability of encountering such
meteors is comparatively low /28/.

Thus, we can draw the following general conclusion on the meteor danger
to space flight: for spacecraft with a small cross section and short flight
duration, the meteor danger is small; for spaceships intended for prolonged
flights to the depths of the universe, the meteor danger increases due to the
large cross-sectionalarea and the long flight duration. Thus, if the cross-
sectional area of the spaceship will be equal, for example, to 10 m?, then
the above-given flight time for one encounter with meteors of a given or
larger mass should be reduced by a factor of 10. But for prolonged space
flights, ships with an even larger cross-sectionalareawill apparently be
built. Consequently, it is necessary to find methods for combating the
meteor danger, and to develop effective systems of protection.

New interesting data on the distribution of meteoric matter in the space
beyond the earth's orbit have been obtained from the automatic interplanet-
ary station "Mars I."" At a distance of 6000 to 40,000 km from the earth,
"Mars I'" intersected the meteor swarm of the Taurids. Its instruments
then recorded approximately one impact of a meteoric particle in two
minutes. At a distance of 20 to 40 million km from the earth, it intersected
another, as yet unknown and unobserved, meteor swarm. There too,
approximately the same density of meteor bodies was recorded.

Much work is still necessary to estimate more accurately the meteor
danger and to develop effective protection for future astronauts.

Are there other planets in the universe in addition to those which revolve
around the sun? Do there exist "earths' about other stars inhabited by
intelligent beings ? Are the solar system and the earth a lucky exception in
theinfinite universe? These problems have interested scientists and served
as a subject of hot debates, discussions, and from time to time, fantastic
assumptions. For a long time only guesses and assumptions were made
regarding the existence of other planetary systems. For example, Bruno
Giordano [1548 —1600] proposed the idea of the existence of other stars, and
an infinite number of ''earths," inhabited by intelligent beings.
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Beginning in 1937 a number of astronomers, including the Soviet scientist
A.N. Deich, observed small irregularities in the motion of some stars. It
was found that these stars move in space along complicated curves as though
slightly moving from side to side. This peculiarity in the motion of stars
can be due only to the motion of their satellite planets, whose attraction
causes the bending of the star trajectories. Calculations showed that the
masses of the satellites of these stars are similar to the masses of the
major planets of the solar system.

Investigations show that the sun and some other stars have approximately
the same stellar age and a similar temperature of their external layers.
Thus it may be assumed that planets revolve around them. There are very
many such stars, even in the part of the universe we can see, and therefore
the number of planetary systems should also be large. By the calculations
of some astronomers, for each one million stars, there should be on the
average one inhabited planetary system, and this means that in the Galaxy
there are about 150,000 planetary systems where life exists.

It may be that one of these "earths' is the invisible planet of a compara-
tively close star ""Cygnus-61,'" situated only ten light years fromus.

The possibility of life on other planetary systems is the greatest riddle
of the universe. Obviously much time will pass before mankind will obtain
direct proofs of the correctness of the assumptions made.
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Chapter II
TRAJECTORIES OF COSMIC SHIPS

§1. Celestial Mechanics — the Science of the Laws of
M otion of Celestial Bodies and Spaceships

All celestial bodies are incontinuous motion. The planets orbit the sun
and are in turn orbited by their satellites. The sun also revolves with
respect to the center of the Galaxy.

All these motions are caused by one basic property of matter, the mutual
attraction of physical bodies. This property is expressed by the law of
universal gravitation. It is natural that the motion of artificial celestial
bodies, spaceships flying by inertia, should be governed by the same law.

The study of the motion of celestial bodies due to their mutual attraction
is the science of celestial mechanics, knowledge of whose elements is
therefore essential to explain the motion of spaceships.

The movement of a body can be represented by three independent motions
— rectilinear motion of the center of inertia, rotation about the center of
inertia, and deformation of the body. The rectilinear motion of celestial
bodies is the principal subject of celestial mechanics.

The "'n-body problem' arising in this study can be formulated as follows:
determine the laws of motion of n point masses, attracting each other by
the law of universal gravitation. The general solution is complicated.
Newton found a simple solution for the problem of two bodies, but for three
bodies this is impossible, as the unsuccessful efforts of the greatest 18th
and 19th century mathematicians indicate. *

But the lack of a complete solution of the z-body problem is not an
obstacle to study of the motion of celestial bodies. In almost all practical
cases, the attraction of one body far exceeds the attraction of all the
remaining bodies. Thus, for example, the dominating factor in the earth's
motion is the attraction of the sun, the dominating factor in the motion of
the moon and of the earth's satellite spaceships is the attraction of the earth,
and so on. Therefore, by taking into account only the attraction of the
dominant body, i.e., solving the problem of two bodies, a first approxima-
tion to the actual motion of the body is obtained. This first approximation
is called unperturbed or Keplerian motion. The study of unperturbed motion
is the basic problem of celestial mechanics.

To obtain the true motion, it is necessary to take into account the
influence of other bodies which was disregarded in the analysis of unperturbed
motion. The influences of other bodies on Keplerian motion are called
perturbations, and the corresponding branch of celestial mechanics is called
the theory of perturbations.

* Particular three- body problems can be solved comparatively simply. See, for example, /41/,
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In connection with the realization of space flights, new and complicated
problems arise in celestial mechanics, such as the study of perturbations
in the motion of artificial satellites of planets, which move at small
distances from the surface of the planets; the transfer of spaceships from
one orbit to another; the motion of spaceships whose orbits pass succes=
sively near two and more celestial bodies, etc. Until these problems are
solved, further development of astronautics is impossible.

The law of universal gravitation was for the first time formulated by
Isaac Newton in his work ""Mathematical Principles of Natural Philosophy'
(1687). His discovery was based on seventeenth-century acheivements of
astronomy and mathematics, and in particular, on the laws of planetary
motion, obtained between 1609 and 1619 by Kepler.

According to the law of universal gravitation, the force of mutual
attraction of two bodies is directly proporitional to the product of their
masses and inversely proporitonal to the square of the distance between

them: Mm

rd

F=f

where M is the mass of the first body; m is the mass of the second body;
r is the distance between them; f is a factor of proportionality, called the
gravitational constant; in the C.G.S. sytem, [ =6.67-10"8cm?/g- sec?.

The law of universal gravitation made it possible to predict with
unprecedented accuracy even the smallest peculiarities in the motion, not
only of celestial bodies of the solar system, but also of twin and multiple
stars. Only one case of undoubted discrepancy remained for some time a
riddle, for the observations of the annual motion of the perihelion of )
Mercury yielded a value approximately 0.4'" larger than the theoretical.
However, even this descrepancy was later explained.

We now know the laws of mutual attraction of celestial bodies, but the
nature of the gravitational forces remains to this day largely unexplained.
Newton made the assumption that gravitation is transmitted mechanically
from one body to another by means of a special medium, "ether", which
fills the whole space between bodies and penetrates into all bodics; but this
assumption and the theory later proposed on mechanical transmission of
the action of some bodies on others could not satisfactorily explain all the
features of gravitation.

One fact in particular remained unexplained: that gravitation appears
instantaneously; as soon as the bodies change position, the forces acting
on the bodies vary immediately.

If gravitation is transmitted mechanically by a medium, then, naturally,
the assumption of a finite velocity of propagation of gravitation arises.
Bowever, in the observed motions of celestial bodies no deviations from the
calculated position due to a finite velocity of propagation of gravitation has
been detected.

Laplace attempted to calculate the miminum propagation velocity of
gravitation, when the corrections for the finite velocity are so small that
they cannot be observed in the motion of celestial bodies. It turned out that
in this case the propagation velocity of gravitation should exceed the velocity
of light by at least a factor of 1 million. Thus, mechanical theories cannot
explain the nature of this rotation,
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The General Theory of Relativity developed by the outstanding scientist
Albert Einstein brought about profound changes in the concept of space and
time, of the motion of material bodies, and of gravitation. This was the
next step in the knowledge of the laws and nature of gravitation.

In classical mechanics, the basic laws of which were formulated by
Galileo and Newton, there is no mutual relation between space, time, and
the physical bodies in the space. Any process taking place in space is
measured by time, which flows rigorously, uniformly, and independently.
The properties of space remain unchanged and independent of the presence
of physical bodies in it. In this space, the Euclidian geometry is true: the
shortest distance between two points is a straight line; light rays propagate
along a straight line; the geometrical dimensions of bodies and their form
are unchanged. The mass of bodies is also constant.

The Theory of Relativity shows that these concepts only approximately
reflect reality and are sufficiently accurate only if the velocity of the bodies
is low compared with the velocity of light. In reality, a profound mutual
relation exists in nature between space, time, and matter.

The path of a body moving by inertia in space is curved, as is the propa-
gation of light rays. The curvature of the path is determined by the attrac-
tion of celestial bodies. Thus, the geometry of space is determined by the
positions of the physical bodies in it,

Space is homogeneous only if material bodies are absent from it. The
real nonuniformity of space, its "curvature,' is perceived as gravitation,
According to the Theory of Relativity, gravitation is simply a manifestation
of the space-time character of the world.

The laws of gravitation following from the General Theory of Relativity
reduce to Newton's law as the ratio of the body's velocity to the velocity of
light decreases.

The assumptions of the General Theory of Relativity have been brilliantly
confirmed. Curvature of light rays when passing near material bodies has
been observed. Exact measurements of the position of stars near the edge
of the solar disc, made during solar eclipses, show that the stars are not
found at their usual places, but are displaced towards the sun by approxi-
mately 2", The new relativistic theory of gravitation shows that the
perihelion of the planetary orbits, in addition to the displacements caused
by Newtonian attraction, should be displaced in each revolution of the planet
by a fraction of a revolution equal to 3v%jc, where v is the velocity of the
planet, and ¢ is the velocity of light.

For Venus, the Earth, and Mars, due to their relatively low orbital
velocities, these annual perihelion displacements are very small (for Venus
0.086', for the Earth, 0.039", for Mars 0.014'), and have therefore not been
detected by observations. An accurate determination of the perihelion of
these planets is difficult because of the small eccentricity of their orbits.
For Mercury, the annual displacement of the perihelion is 0.43'", i.e., the
magnitude obtained from observations, but not accounted for by Newton's
law.

It is clear that even the General Theory of Relativity, like any theory
explaining certain natural phenomena, cannot account for and describe all
of their diversity and infinite interconnections. The law of universal
gravitation, formulated by Newton, is the first step in the study of the
interaction of bodies. Finstein's theory is the next step in knowledge of
the truth,
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§2. Unperturbed Motion of Spaceships

The motion of spaceships, as well as of other celestial bodies, is due
to the mutual attraction of bodies, expressed by the law of universal gravita-
tion, as was mentioned previously.

If a body m has a unit mass, then a point body with a mass M acts on it
with a force

y=2%
r
where u = fM. The force V is called the Newtonian potential of the body M.

As seen from the formula, the larger the mass of the body M the larger
(for a given value of r) the Newtonian potential. Thus, the Newtonian
potential of the sun is larger than that of the earth, and the potential of the
earth is larger than that of the moon.

The Newtonian potential of a celestial body at some point of space is
equal to the work which must be done in order to overcome the force of
attraction in moving a body of unit mass from the given point to infinity.

The determination of the potential of real celestial bodies having a
complicated form and distribution of masses is difficult. Only those celes-
tial bodies which have a spherical form and a uniform density distribution
at all points possess the same potential as do point bodies with equal masses.
Hence it may be concluded that a spherical celestial body with a uniform
density distribution attracts a material point in space as though the entire
mass of the body was concentrated in its center. This assumption is used
when determining the laws of unperturbed motion of spaceships.

Thus, we will assume that a real celestial body (the sun, the earth, the
moon, and so on) has mass M, which is concentrated in its center, and that
the mass of the spaceship moving in space is equal tom. The forces of
mutual gravitation impart to the shipan acceleration j, with respect to the
celestial body whose components along the axes of a rectangular coordinate
system with origin at the center of the celestial body, and stationary with
respect to the stars, will be (Figure 25):

o dx_ X,
Sam T TR
=By __ Y.
Yo de Y’

a2z H
=Z=_u2

These differential equations describe the unperturbed motion of a space-
ship. Their solution, omitted here, leads to the following results:*

Cix+ Coy+ Cez=0;

=

-;—ccosé) '

where C), C,, C;, p, and e are constants.

* The complete solution of the two-body problem can be found in all texts on celestial mechanics. See,
for example, /11/ and /31/,
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The first of these equations is that of a plane passing through the origin
of the coordinates. Consequently, the orbit of the spaceship in unperturbed
motion describes a plane curve, stationary with respect to the stars and
lying in a plane which passes through the center of the celestial body.

FIGURE 25. Acceleration of a spaceship in the
gravitational field of a celestial body with mass M

In the second equation Ag¢ is the rotation angle of the radius-vector r
during the time interval Af and therefore the arc of the orbit of a spaceship,
corresponding to the time interval Af, willbe rAg. The area of an elementary
triangle described by the radius-vector during this time interval is
0.5 r-rAg. Dividing this area by At we obtain the sectorial velocity of the

spaceship
r2 A¢

Useet=10.5 a

Comparing the value for the sectorial velocity with the second equation,
we note that the left-hand side is twice the sectorial velocity. Hence it
follows that the sectorial velocity of a spaceship, or the area swept by its
radius-vector, in a unit of time, is constant for all points on its orbit
(Kepler's second law).

The third equation is the equation of a second-order curve, or of a conic
section in a polar coordinate system with a focus at the center of the
celestial body and polar axis directed from the focus to the nearest vertex

2
of the curve, The parameter of this curve is p=—33—, the eccentricity
e= 1+ __i and the polar angle § = ¢-~¢@, is the true anomaly of the

spaceship (C,= p/a is an integration constant).
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As is known, the ellipse (which in a particular case reduces to a circle),
the parabola, and the hyperbola are conic sections. For an ellipse, e<1,
for a parabola, e =1, andfor a hyperbola, e> 1. Thus, a spaceship moves
either along an elliptical, parabolic, or hyperbolic orbit (Figure 26).
Motion is also possible along a circular orbit, in which case e = 0,and
along a radial orbit.

FIGURE 26, Types of orbits of spaceships

1- elliptical; 2- parabolic; 3- hyperbolic;
4- circular; Py, Py, Py, - perigees (peri-
helions) of the orbits.

The form of the orbit of the spaceship is determined by its velocity Vo
at the nearest vertex (perigee or perihelion). If Vi< f—“,then the ship
moves along an elliptical orbit. For V3=-f—"‘ the motiox?l will be along a
parabolic orbit, and for V3>%, along a h;perbolic orbit. Consequently,

the form of the orbit of a spaceship is determined by its linear velocity at
perigee or perihelion. Conversely, for the spaceship to move along a
prescribed orbit, it should have a certain velocity, which depends on the
mass of the celestial body, on the distance of the perigee or perihelion,
and on the required form of the orbit.

Let us now imagine two spaceships moving along different elliptical
orbits around the same celestial body. Denoting their periods of revolution
by P,and P, and the semimajor axes of the orbits respectively by a, and
aq, it is possible to obtain the formula

2 3
P4

nd 3
Py a;
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This means that for motion along elliptical orbits, the squares of the
periods of revolution are proportional to the cubes of the semimajor axes
of their orbits (Kepler's third law). It follows from this formula that in
the case of motion along an elliptical orbit, the period of revolution of a
spaceship is independent of the eccentricity of the orbit, and is determined
solely by the magnitude of the semimajor axis. Therefore, spaceships
moving along elliptical orbits with different eccentricities, but with semi-
major axes of identical length, have equal periods of revolution. Such
elliptical orbits with equal semimajor axes and different eccentricities are
called equal-energy ellipses.

These are the laws of unperturbed motion of spaceships. We repeat
once more that these laws are also correct for natural celestial bodies such
as planets and their satellites, comets, meteors, and so on,

§3. Cosmic Velocities

One of the basic motion parameters of a spaceship is its velocity. The
magnitude of the velocity not only determines the duration of the '"flight"
from one point of space to another, which is important in space navigation,
but also, as shown above, determines the form of the orbit, We shall
therefore consider this problem in more detail.

The solution of the differential equations describing the motion of a
spaceship also leads to the following formula, determining its velocity at
any point of the orbit:

V’=2E' + Cb
ple—1) r
where C,==——"

From analytic geometry it is known that for an elliptical orbit the square

of the eccentricity is
. a¥ — pe
=

and the parameter of the orbit is

p=-r"
where a and b are the semimajor and semiminor axes of the orbit,
respectively.
Therefore

The velocity of the spaceship at a given point of the elliptical orbit is

then determined by the formula:
V’=H<£——l).
r a

This formula can be represented in a different form. Let the radius of
the celestial body with respect to which the ship is moving be R, the
instantaneous height above its surface be H, and the gravitational accelera-
tion on the surface of the celestial body be go.
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In this case
r=R-+H,

Let us now imagine that some body with mass m, lies on the surface of
the celestial body. Its weight will be mg,, but on the basis of the law of
universal gravitation

_§ Mm
mgo=f Ri

from which
fM=p=Rig,

Now the formula for the velocity of the spaceship at any point of its
elliptical orbit will be

s ps 2 1
Vi=FRe <R+H_T)'

If we consider the motion of a satellite of the earth, then in this formula
R is the radius of the earth, g, is the gravitational acceleration at the
surface of the earth, and His the altitude of the ship above the surface of
the earth at the given moment. If we consider the motion of a spaceship
relative to the sun, then in the formula, R, g,, and H are respectively the
radius of the sun, the gravitational acceleration on its surface, and the
ship's altitude above the surface of the sun.

It follows from the last formula that the velocity of a spaceship along an
elliptical orbit does not remain constant. In the above equation the second
term in the brackets, for a given elliptical orbit, as well as the product
R2g, are constant, and therefore the maximum velocity corresponds to the
smallest value of H, i.e., the perigee (perihelion), and the minimum
velocity, to the largest value of H the apogee (aphelion).

As an example, the formula was used to calculate the velocity at two
points, perigee ( Hp = 226 km) and apogee ( /o = 1881 km), of the third Soviet
artificial earth satellite, launched into orbiton 15 May, 1958. The velocity at
perigee was found to be about 8.19km/sec and at apogee, 6.55 km/sec.

A circular orbit is a particular case of the elliptical orbit, and therefore
the above formula is also correct for a circular orbit. But when moving
along a circular orbit, the semimajor axis a =R + H. Substituting this value
of a in the previous formula and setting V =V we obtain

V=1 o

For a given circular orbit the altitude of a spaceship remains constant,
and therefore its velocity at all points of a circular orbit is constant.

The velocity determined by the last formula is called circular, and in
the case of the earth is the first cosmic velocity.* As can be seen from
the formula, the magnitude of the circular velocity depends not only on
certain physical characteristics of the celestial body (R, g) but also on the
height of the ship above the surface. The larger the R and g, of the celestial
body, the higher the circular velocity, the greater the altitude of the

* This formula may also be easily obtained by using the fact that in the case of motion along a circular
orbit the force of inertia is equal to the torce of attraction of the spaceship by the celestial body.
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spaceship, the lower the velocity which it needs in order to move along a
circular orbit (Figure 27).
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FIGURE 27, Dependence of the first and second cosmic velocities
on the altitude of the spaceship

The velocity of a spaceship for # = 0 is sometimes called zero circular
velocity. Zero circular velocities for various celestial bodies were given
in the first chapter.

At a distance of 384,400 km from the earth, which is equal to the mean
distance between the moon and the earth, the first cosmic velocity is equal
to 1.02km/sec. This is the mean velocity of the moon along its orbit. For
a satellite of the sun the circular velocity at the distance of the earth's
orbit from the sun is equal to the mean velocity of the earth around the sun,
29.8km/sec.

Thus, for a spaceship to move along a circular orbit at a given altitude,
it is necessary to give it circular velocity at this altitude. This is not the
only condition. The second is that the instantaneous velocity vector be
perpendicular to the radius-vector of the ship. Nonfulfillment of one of
these conditions results in elliptical motion. It is interesting to note in
this connection that if several bodies are launched with circular velocity
from one point of space in different directions, after some time all these
bodies return simultaneously to the starting point.* This is due to the fact
that they will move along elliptical equal-energy orbits with one common
point, for which, as was indicated above, the periods of revolution are equal.

* With the exception, of course, of those which in their motion meet the surface of the celestial body.
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The circular velocity is not, as is sometimes thought, the minimum
velocity for the existence of a satellite of a celestial body. Suppose that
the satellite receives circular velocity at point A(Figure 28). It will then
move along the circular orbit /. However, it can also move along the
elliptical orbit 2, where the velocity required at point Ais evidently lower.
Finally, motion along orbit 3 is also possible in principle. In this case,
an even lower velocity is required at point 4. Let us confirm this by
calculation.

Let us assume that the point A is situated 500 km above the surface of
the earth. The first cosmic velocity at this height is

Vl:l/ _Rigy __ f‘??.‘s‘gs.."l.()"_"i:'[‘sg km/sec.

R+ H 6371 1+ 500

This velocity results in motion along the circular orbit I. If the height of
the point P, is equal, for example, to 150 km, and of the point P4is equal
to 0 km, then the lengths of the semimajor axes for the second and third

orbits are:
2-6371 - 500 + 150

2
__ 2:6371-+500 +0
2

a' = = 6696 km;
=6621 km,

Then the velocities required at the point A in order to move along these

orbits will be:
_ 2 2 1y — / .
Vg—‘/Rgo( A as) 7.51 knm ‘sec;

— 2 _ 2__._-1_.) 5
V,_l/ Rgo< R P 7.47km /sec.
For motion along a parabolic orbit ¢ = | and therefore C, = 0. Taking
V=V, we obtain
V=2
] r

or, analogously to the previous formulas,
v(:1= _ .

The velocity determined from this formula for the earth is called the
second cosmic velocity. For all celestial bodies this velocity is also called
parabolic, and sometimes escape velocity* or break-off velocity, meaning
"escape' and ""break-off'' from the action of the gravitational field of the
celestial body. In fact, a parabola is a curve whose branches go to infinity,
and therefore a spaceship having at a given point in space the velocity V.,
goes from the celestial body to infinity, i.e., completely overcomes gravita-
tion. As can be seen from the formula, the velocity of the spaceship at
infinity (/ = ~) will in this case be equal to zero.

The first chapter gives the values of the escape velocity for the celestial
bodies of the solar system. Figure 27 shows the dependence of the second
cosmic velocity on the height above the earth's surface.

* The tormula for the escape velocity can also be derived on the basis of the Law of Conservation of Energy.
The kinetic energy of the spaceship should be equal to the work expended to move it in the gravitational
field ot the celestial body from the given level // to infinity.
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Thus, velocities lower than the escape velocity correspond to elliptical
orbits, and the escape velocity, to parabolic orbits. It is natural now to
draw the following conclusion: the closer the velocity of a vehicle to the
escape velocity, the more elongated the elliptic orbit will be, and the further
from the celestial body it will move.

Py
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Yot G<h <Y,

FIGURE 28, Minimum velocities of a
satellite ship for flight along 1) circular
and 2) and 3) elliptical orbits

Sub-parabolic velocities are characteristic of satellites of celestial
bodies, and parabolic and super-parabolic velocities correspond to flights
beyond the gravitational boundaries of a given celestial body, for example,
interplanetary flights from the earth.

Comparing the formulas for the circular velocity and for the escape
velocity, one observes the simple relation:

Vey=Ve, V2 ~1.41V

As was already indicated, velocities higher than the escape velocity are
called hyperbolic. A spaceship with a hyperbolic velocity goes to infinity
like the case of escape velocity, but the curvature of the orbit is smaller,
the ship departs more rapidly from the celestial body, and the velocity at
infinity is higher than zero.

For a hyperbola P
a®
b2

p= P
Ci—=*
a

The formula for the velocity in this case takes the form:

v2=P(i+_L)
or r a/

V2=R9g°( R j H '{'%)'
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This formula determines the velocity of the spaceship at any point of a
hyperbolic orbit. As can be seen from the formula, at infinity (H = o)

Rigy
-

Ve

Let us determine the velocity which, at the mean distance of the earth
from the sun, ensures the escape of a spaceship from the gravitational field
of the sun. It is clear that its magnitude can be calculated by the formula
for the escape velocity, if we put R = the radius of the sun, g, = the gravita-
tional acceleration at the surface of the sun, and R + H = the mean distance
between earth and sun.

This velocity can also be obtained in another way. The circular velocity
of a satellite of the sun at the distance of the earth's orbit is equal to the
mean velocity V. of the earth along its orbit around the sun. Knowing the
relation between the circular velocity and the escape velocity, we obtain

V=V, |/ 2=29.8-1.41=42.1 km /sec.

Thus, the heliocentric velocity, the escape velocity of a spaceship with
respect to the sun is 42.1 km/sec. Determination of the escape velocity of
the ship with respect to the earth, the geocentric velocity, is an important
problem since the spaceship must take off from the earth.

Calculations show that the minimum velocity with respect to the earth
of a spaceship to start from the surface of the earth for flights beyond the
limits of the solar system should be 16.7km/sec. This constant velocity
is called the third cosmic velocity. We will discuss this and show its
physical meaning in a later section. Now we only note that this velocity is
not high, if we compare it with the second cosmic velocity (11.2km/sec at
the surface of the earth). This indicates that currently existing rockets will
in principle be able to fly beyond the limits of the solar system.

Of course, spacecraft can also move with respect to celestial bodies with
higher velocities — reaching nearly the velocity of light.*

In concluding this section we consider an important parameter of motion,
the revolution period P of a satellite around a celestial body.

Consider a satellite moving around a celestial body of radius R along a
circular orbit at a height H. Obviously,

P 21!(R+H) 2n(R+H) ] / (R+H)*
_Rigy
l/ R+H

But for a satellite moving along a circular orbit, R + H = a, and therefore,

p_21/ 2
R &0
where a is the semimajor axis of the orbit.

It was shown above that the period of revolution is independent of the
eccentricity of the orbit. Ships moving along orbits with equal semimajor
axes have equal periods of revolution. Consequently, this formula is also
true for ships moving along elliptical orbits, if the semimajor axis of the

* Measurements of the velocity of light made in 1951 resulted in the value 299,792 km/sec, with a probable
accuracy of 1 to 2km/sec,
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elliptical orbit is calculated by the formula

a=R-

Hp +Ha

2 f

where H, and Hjp are respectively the heights of the furthest (apogee,

aphelion) and nearest (perigee, perihelion) points of the orbit.

The revolu-

tion period also depends on such physical characteristics of the celestial
body as its radius and the gravitational acceleration at the surface (Tables

5 and 6).

TABLE 5. Revolution periods of a satellite ship orbiting the earth

Hélght of Semimajor Period of He'_lght of Semimajor Period of
circular . X circular X .
X axis, km revolution ) axis, km revolution
orbit, km orbit, km
0 6370 1Mo 4™i0 5000 11,370 Fggmin
100 6470 1 27 10,000 16,370 5 49
200 6570 1 29 20,000 26,370 11 30
300 6670 1 31 30,000 36,370 18 37
500 6870 1 35 35,870 42,240 24 00
1000 7370 1 46 40,000 46,370 27 44
2000 83170 2 08 50,000 56,370 37 11
3000 9370 2 31 100,000 106,370 96 24
384,400% 27,32 days

* The mean distance from the earth to the moon.

TABLE 6, Revolution periods of satellite ships orbiting the planets and the moon

Revolution period, hours
Planet
H = 0km H = 1000 km H = 5000 km
Mercury .. ovveveinn 1,48 2,46 7.70
Venus. .,....... .. 149 1,88 3.63
Mars ..o 1.61 2,38 6.38
Jupiter, . .. oo 2,86 2,92 3.18
SatUM. o v v vv v e vn e s as 3.92 4,01 4,43
Uranus . oo vvvevnnn . 2,9 3,13 3.85
Neptune .. ........... 2,63 2,80 3.46
Moo ..o v v i v e 1,82 3,60 13,90

It follows from Table 5 that the revolution period of a satellite orbiting
the earth, in a circular orbit at a height of H = 0, is equal to 84.4 min. As
is known, this is also the oscillation period of a Schuler pendulum, a hypo-
thetical pendulum with a plumb-line equal in length to the radius of the
earth and with the point of suspension at the surface of the earth. The
remarkable property of such a pendulum is its unperturbability. Accelera-
tion applied to such a pendulum does not move it out of the vertical. This
property of the Schuler pendulum is widely used in inertial navigation
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systems of aircraft and ships, which are essentially physical analogues of
a hypothetical pendulum with an oscillation period of 84.4 min.

The launching of a satellite which is synchronous with respect to the
surface of the earth is also of interest. This satellite should obviously
have a revolution period of 24 hours. This, however, is not the only
condition. The plane of any satellite's orbit coincides with the center of
the earth, and therefore a synchronous satellite is only possible if the
inclination of its orbit {= 0°. In other words, the satellite should be
launched over the equator in the direction of the earth's rotation (from west
to east) into a circular orbit 35,870 km above the surface of the earth with
an orbital velocity of approximately 3.07 km/sec (see Table 5). Sucha
satellite will "hang'' above the same point of the equator. Some scientists
foresee a wide use of such satellites in world television systems, naviga-
tion, and communication systems.

§4. Perturbations of the Orbits of Spaceships

All the foregoing considerations were devoted to unperturbed, or
Keplerian motion of spaceships, whose laws are determined, as was shown
above, by the solution of the two-body problem. However, Keplerian
motion is only the first approximation to the true motion of spacecraft.

The true motion of spaceships takes place along orbits of a more compli-
cated form. The main reasons for this in the case of low-orbit artificial
earth satellites is the influence of the atmosphere and the nonuniform nature
of gravity due to the flattening of the earth at the poles and the nonuniform
distribution of its mass.

The influence of the gravitational fields of the sun, moon, and planets on
the motion of low~-orbit satellites is actually slight but in interplanetary
flight they become important, and at certain distances overcome the effect
of the earth's gravitational field.

In general the perturbations are comparatively small, and the difference
between the actual and unperturbed orbits is small. It is therefore assumed
that at each moment, the motion is along an unperturbed orbit, whose
elements continuously vary as a result of the perturbations. Such orbits
with time-varying elements are called oscillating orbits.

The orbit perturbations are divided into secular and periodical. The
secular perturbations are characterized by a continuous variation of the
orbital elements in one direction, and the periodical perturbations are
characterized by an oscillation of the orbital elements about some mean
position.

Let us consider the perturbations of the orbits of low-orbit satellites in
greater detail. Periodical perturbations due to the nonuniform nature of
the earth's gravitational field give rise to deviations, of about 10km, of the
true orbits of the satellites from the unperturbed orbits.

The main secular perturbation of the orbits of satellite ships due to the
nonuniform nature of gravity, is the precession of the orbit, which is
manifested in a slow rotation of the plane of the orbit with respect to the
axis of the earth (Figure 29). The inclination of the orbit in this case
remains practically unchanged.
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The mean velocity of angular precession wp of the orbit is given by the
formula
21th ( w%Re ) X
Wp— —— —_——
P= T \* 28 cos ¢,

where R, is the equatorial radius of the earth; go is the gravitational
acceleration at the equator; a is the flattening of the earth; og is the velocity
of angular rotation of the earth; i is the inclination of the orbit; p is the
parameter of the orbit; P is the rotation period of the satellite.

N, Rotation of the earth

Pole of the
orbit

/

Direction of
the orbital precession

BN P!

S

FIGURE 29. Precession of the orbit of an
earth satellite due to the nonuniform nature
of gravity (orbit inclination 65°)

As seen from the formula, the velocity of angular precession depends on
a number of parameters, including the inclination of the orbit (Table 7).
For satellites on polar orbits (i = 90°) the angular precession velocity of
the orbit is zero.

TABLE 7. Precession velocities and rotation velocity of the line of apsides of the orbits of the first,
second, and third Soviet artificial earth satellites at the beginning of their existence

R . Velocity of rota-
Inclination of . Velocity of pre- X )
e s . X Revolution ) tion of the line
Artificial earth satellite the orbit, R . cession of the X
degrees period, min orbit, deg/days of apsides of the
g ! orbit, day
FILSt, o v v v i i e v v n 65,129 96,117 3.181 0.432
Second ., ...\ 4. 65,310 103,75 2,663 0,407
Third............ 65,188 105,95 2,528 0.326

Thus, for the first Soviet artificial earth satellites the precession of the
orbit per revolution was approximately 15°'.,

The nonuniform nature of the earth's gravitational field is the reason for
another secular perturbation of the orbits of satellites. This is manifested
in the rotation of the line of apsides in the plane of the orbit, as a result of
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which the angular distance between the perigee and the ascending node

continuously decreases.

and of apogee accordingly varies.

The latitude of the geographical location of perigee

As can be seen from Table 7, this

perturbation for the first Soviet artificial satellites was considerably smaller
than the precession of the orbit.

”‘P' km
H, km 250
2000 — I
1000 ~J ! I
500 / N, | /00
A ’
0 Joo 1500 2500 0 500 1500 2500

FIGURE 30, Dependence of the height of the apogee H, and the perigee HP
of the first (1), second (11), and third (11I) Soviet artificial satellites on the
nuniber of orbits around the earth

Thus, the nonuniform nature of gravity changes the orientation of the

ship's orbit in space but does not affect the form of the orbit.

Another

source of secular perturbations, atmospheric drag, has very little effect
on the orientation of the orbit, but considerably modifies its form.
The atmospheric drag reduces the energy of the satellite, resulting in a

decrease of its flight altitude (Figure 30).
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FIGURE 31. Revolution period of the
first (1), second (1), and third(Il1) So-
viet artificial satellites as a function of
the number of revolutions around it

Analyzing the observed data of
the first artificial earth satellites, it can be
seen that until penetration into the densc
layers of the atmosphere (H = 200 km), the
decrease in the height of the apogee is faster
than the decrease in the height of the perigee.
Consequently, due to the atmospheric drag,
the elliptical orbit of a satellite approaches

a circular form.

Due to the lowering of the flight altitude,
the revolution period of the satellite decreases
(Figure 31). The rate of deceleration of a
satellite depends on its cross-sectional load,
the ratio of the weight of the satellite to the
area of its {middle) cross section, and on a
coefficient determined by the geometrical form
of the satellite and its orientation in space.
The higher the cross-sectional load, the

smaller the influence exerted by the atmosphere on the satellite. The drag
is also less at greater heights due to the decrease in atmospheric density

with height.

Atmospheric drag also reduces the altitude of a satellite in a circular

orbit (Table 8).

Above an altitude of 140 to 160 km, the satellite makes altogether only

1 to 2 revolutions.

The duration of satellite's motion from the moment of being put into orbit
to complete braking in the dense layers of the atmosphere is called the
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satellite!s lifetime. This depends not only on the cross-sectional load, but
to a considerable extent also on its flight altitude. With increasing altitude
the lifetime increases. Thus, for circular orbits, an increase in altitude
from 250 km to 300 km increases the lifetime by a factor of 5; from 300 to
400 km, by a factor of 8; and from 400 to 500 km, by a factor of approxi-
mately 6.3 (Table 9).

TABLE 8, Decrease in the height of a circular orbit of an earth satellite in one revolution (average
data for one of the laws of variation of the atmospheric density) (Cross=sectional load about 20 kg/m?)

Orbit height,

480 0 20 240 190 160
km

Decrease in the 0,016 0,032 0,145 1,05 7.6 53,1
height per one
revolution, km

TABLE 9. Lifetimes of an earth satellite (weight 100kg, diameter 1 m, cross-
sectional load about 128 kg/m?2)
a) circular orbit

Orbit height, km 200 250 300 350 400 500

Lifetime, days 0.4 4 20 65 160 1010

b} elliptical orbit (lifetime in days)

Height of Height of apogee, km
perigee,km
500 00 1000 1300 1600
200 9 18 37 58 82
230 25 52 102 185 237
260 53 116 238 370 535
300 114 260 545 890 1280
400 410 1120 2630 4450 6600

The lifetime of satellites is directly proportional to the cross-sectional
load and inversely proportional to the drag coefficient. Thus, for a satellite
with a diameter of 2 m, weighing 1000 kg (cross-sectional load of about
319 kg/m?), the lifetime will be longer than those given in Table 9 by a factor
of approximately 2.5 /2/.

As was already said, the gravitational fields of the sun, the moon, and
the planets exert a small influence on the motion of low-orbit satellites.
Only at altitudes measured in tens and hundreds of thousands of kilometers
do the effects of other celestial bodies, and primarily the sun and the moon,
become noticeable in practice.

The perturbing actions of the sun and the moon on a satellite lead first of
all to a variation in the height of the perigee. Depending on the position of
the orbit with respect to the sun, the height of the perigee may increase or
decrease. The variation in one revolution depends on the height of the
apogee; the higher the apogee, the more the height of the perigee varies.
Decrease in the height of the perigee can considerably shorten the lifetime
of a satellite in comparison with the nominal values, which take into account
only atmospheric drag.
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Thus, for example, the Soviet automatic interplanetary station launched
on 4 October, 1959, which photographed the far side of the moon, passed
near the earth at a height of somewhat over 40,000 km on its first revolution,
The apogee was approximately 480,000km. At such great heights,
atmospheric drag is practically nil and it could therefore be expected that
the station would remain in orbit for a very long time. However, the
perturbation of the sun caused such a sharp decrease in the perigee, that
the lifetime of the station was only about half a year.
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FIGURE 32, Perturbation of the orbit of the spaceship
launched to the moon, calculated by V. A, Egorov,
The dashed line shows the orbit without allowance for
the perturbation of the moon; the figures on the orbits
of the ship and of the moon give the duration of the
motion in days from the moment of launching

In order to prolong the lifetime of such automatic stations and spaceships
three conditions must be satisfied. The apogee should be as small as
possible. For example, for a flight to the moon, the apogee should not
greatly exceed the distance from earth to moon. Furthermore, the perigee
on the first revolution should be sufficiently large. Finally, the moment
of launching should be chosen so that the perturbation of the sun does not
lead to a decrease in perigee.

The perturbations of the orbit of a spaceship are particularly large if it
enters the gravitational field of another celestial body (Figures 32 and 33).

Perturbations also arise from the pressure of solar rays on the
spaceship. However, such perturbations are observable only in the case
of long flights relatively near to the sun.*

Thus, flights to the moon and to other planets require calculation
of the orbits which take into account the perturbations in the gravitational
fields of these celestial bodies.

* [The effects of solar pressure are inversely proportional to the cross-sectional load. Thus, the American
"Echo"” satellite, a hollow sphere of extremely low cross-sectional load, was seriously affected by solar
pressure, ]
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FIGURE 33, Perturbation of the orbit of a spaceship with a
calculated apogee at the point where the gravitational attrac-
tions of earth and moon are equal, calculated by V.A.Egorov,
The dashed line shows the orbit without allowance for lunar
perturbations; the figures on the orbits of the ship and moon
give the duration of the motion in days from the moment of
launching

§5. Zone of Predominance of the Attraction and the Sphere
of Action of the Earth and of Other Celestial Bodies

According to the law of universal gravitation, the force of attraction is
inversely proportional to the square of the distance. Consequently, as one
gets further from a celestial body the force of attraction acting on the ship
rapidly decreases. But the force of attraction is proportional to the product
of the mass of the celestial body and the mass of the spaceship. Therefore,
in general, two celestial bodies, equidistant from a spaceship, act unequally
on it. Obviously, there will be a series of points in space at which the
attraction of the ship by both celestial bodies is equal. These points form
some surface in space, which is the boundary of the region of predominance
of the attraction of one celestial body over the other (Figure 34).

We will now give the solution of a particular problem — to find the point
on the straight line connecting the centers of two celestial bodies, at which
their attraction is equal.

The attraction of the ship by the two bodies is:

M1;n H Fy=f ﬂ;ﬂ ,
r "2

F1=f

where M, and M, are the masses of the celestial bodies, and r, and r, are
the distances from their centers to the spaceship.
From the conditions of the problem F, = F,, and consequently:

\ _
M r_n:l/m
My s M,
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If the first body is the sun, and the second body is the earth, then
Mo/M o= 333434 and rp/rg =577.432. The point of equal attractions is situated
at a distance of 149,198,620 km from the sun and 258,380 km from the earth.

Larger planet

Smaller planet

Region of predominance of the
attraction of the small body

Region of predominance of the
attraction of the large body

FIGURE 34.* Region of predominance of the attraction of
celestial bodies (at the points A and B the attraction of the
spaceship by the two bodies is equal)

For the earth-moon system, the point of equal attractions is 38,321 km
from the moon and 346,079 km from the earth.

However, knowledge of the region of attraction predominance is not as
important in space flights as the knowledge of the parameters of the sphere
of action of the celestial body.

Consider two celestial bodies, for example the sun and the earth. The
spaceship starts from the earth, flying to other celestial bodies. Since it
must have a velocity not less than the second cosmic velocity, it will
initially move along a parabolic or hyperbolic orbit with respect to the
earth, influenced by the earth's gravitational field. Afterwards, it will
follow some orbit under the action of the gravitational field of the sun.

That region of space, within which the orbit of a spaceship is affected by
the gravitational field of a given celestial body, is called the sphere of
action of the celestial body. It is possible to give a more rigorous definition
of this sphere. For example, for the sun-earth system, the sphere of
action of the earth is that region of space, within which the ratio of the
perturbing force of the sun to the force of attraction exerted by the earth
on the spaceship is smaller than the ratio of the perturbing force of the

earth to the force of attraction of the spaceship by the sun:
Fpert.s <_F_pen‘ E
L Fs_ s '
or
FS-) S_FS—UE FE-»S_F_F___._S

FE—»S rS—oS

where Fg_,is the force of attraction of the spaceship by the sun; Fg_, is the

* [We may consider the case of a line passing through both celestial bodies. The magnitude of the gravita-
tional attraction of each is shown as the height of the shaded area in Figure 34, The region of predominance
of the attractive force of a heavenly body is where its shaded area is higher than the other. Points A and
B denote the places where the heights, and therefore the gravitational forces, are equal. The region of pre-
dominance of the smaller planet is between points A and B; on either side of it the gravitational attraction
of the larger planet is greater, |
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force of attraction of the spaceship by the earth; Fg,p is the force of
attraction of the earth by the sun; Fy,5 is the force of attraction of the sun
by the earth,

According to the law of universal gravitation, the last two forces are
equal.

The radius of the sphere of action of one celestial body to another of
larger mass is given by the formula

z
()
where m and M are the respective masses of the two bodies and r is the
distance between them.

The radii of the spheres of action of the planets with respect to the sun
have been calculated by this formula (Table 10).

TABLE 10, Radii of the spheres of action for the sun-planet systems

Radius of the Radius of the
Planet sphere of action, Planet sphere of action,
thousands of km thousands of km
Mercury 110 Jupiter 48,500
Venus 620 Saturn 54,500
Earth 930 Uranus 52,000
Mars 580 Neptune 87,500

The greater the ratio m/ M and the distance r, the greater, as can be
seen from the formula, is the radius of the sphere of the action of the first
body. This explains the large radii of the spheres of action of the remote
giant planets.

Within the sphere of action of a planet, the motion of a spaceship is
determined mainly by its gravitational field. The gravitational fields of
other celestial bodies, including the sun, cause relatively small perturba-
tions of this motion. Outside the sphere of action of the planet, the motion
is determined by the gravitational field of the sun; the gravitational fields
of the planets cause only small perturbations. When a spaceship flies from
the earth to the moon and back (the radius of the sphere of action of the
moon with respect to the earth is approximately 66,000 km), the motion
within the moon's sphere of action is governed by the moon's gravitational
field, and outside of it by that of the earth (Figure 35). The sphere of action
of the earth is considerably larger than the zone of predominance of the
earth's attraction, as seen from the figure. An interplanetary spaceship
will be ""tied to the earth" through its gravitational field up to 930,000 km.

Motion within the sphere of action of the earth, considered with respect
to the earth, we will call geocentric; motion in the sphere of action of the
moon, considered with respect to the moon, we will call selenocentric;
motion outside the spheres of action of the earth, of other planets, and of
the moon we will call heliocentric.

Calculation of the trajectory of a spaceship in the general case is related
to the solution of a problem for several bodies, for example; earth-ship-
moon, or earth -ship-sun-Venus. This problem can be approximately
reduced to separate solution of the two-body problems; earth-ship and
moon - ship or earth - ship, sun-ship, and Venus - ship.
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We return now to the problem of the third cosmic velocity and attempt
to determine its magnitude., We recall that the third cosmic velocity is the
minimum take-off velocity from the surface of the earth which ensures
escape from the solar system, As was indicated previously, the heliocentric
escape velocity from solar attraction is 42.1 km/sec, and the orbital
velocity of the earth with respect to the sun is 29.8km/sec. We will assume
that the ship is launched from the earth in such a way that, on the boundary
of the earth's sphere of action, the vector of its geocentric velocity coincides
with the vector of the orbital velocity of the earth. In this case the required
geocentric velocity on the boundary of the sphere of action of the earth is

V;==42.1— 29.8=12.3 km/sec

Taking into account the necessity to overcome earth's gravitational field,
we obtain on the basis of the law of conservation of energy
mVE,
2

mv?
T

=1, +

The kinetic energy spent on accelerating a spaceship, starting from the
surface of the earth, should be equal to the sum of the potential energy at
the surface of the earth and the kinetic energy of a ship having velocity V,
at the boundary of the earth's sphere of action.

Pluto

19 years 91 days

Neptune

of . 12 343
& sphere ‘C“C)n 2 years 343 days

Uranus

Saturn

Jupiter

Mars NI year 39 days

70 days
Orbit of the earth

FIGURE 35, Sphere of action of the earth, FIGURE 36, Orbit of a ship starting from
zone of predominance of the earth's the earth with the third cosmic velocity
attraction over the sun's attraction (shaded),

and the sphere of action of the moon with

respect to the earth

We have already noted that to overcome the gravitational field of the
earth, a spaceship starting from the earth should have the second
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V2
cosmic vzeloci’cy2 Ve, = 11.2 km/sec.* Consequently, IL,:_EI—Zﬂ and then

- my’
_EL’ Assuming the mass of the spaceship in flight is con-

my? mVe,
—_— 2
2 FR .
stant, we obtain

Veg= V V24 Vi

Ves=J 11.28412.3*= 16.7 km /sec

This is the so-called third cosmic velocity. A star-ship launched with
this velocity will first move along a hyperbolic orbit with respect to the
earth. Then, after leaving the sphere of action of the earth, it will move
along a parabolic orbit with respect to the sun (Figure 36).

Thus, the third cosmic velocity is equal to 16.7km/sec, but this velocity
was obtained without considering the diurnal rotation of the earth. As a
result of this rotation, as was shown in the first chapter, all points on the
terrestrial surface have a linear velocity V: = 0.465 cos ¢ where ¢ is the
latitude of the starting point. Consequently if it is assumed that the vector
of this velocity and the vector of the initial velocity of the star-ship coincide,
to fly beyond the solar system the ship should have a velocity V= 16.7 -
-0.465cos¢. The velocity of the diurnal rotation of the earth should be taken
into account in the launching of spaceships of any type.

§6. Trajectories of Interplanetary Ships

Let us consider now the trajectories of interplanetary ships. Assume
first that the earth and other planets move along circular orbits whose radii
are equal to the mean radii of their true orbits, and that the orbits of the
planets and of the spaceships lie in one plane.

In general, the trajectory of an interplanetary ship can be divided into
the following phases (Figure 37): launch and vertical flight to satellite
orbit height (AB), flight in a circular or elliptical orbit around the earth (BC),
flight within the limits of the sphere of action of the earth (CD), flight along
an elliptical orbit withrespect to the sun (DE), flight within the sphere of
action of the destination planet (EF), orbital flight around the destination
planet (FG) and, finally, the descent to the surface of the destination
planet (GH).

The trajectory points at which the spaceship transfers from one orbit
to another are called transition points or orbital transfer points. In
general all these points, with the exception of points D and E, a certain
amount of energy has to be expended for the transfer of the ship from one
orbit to another. At points D and E transfer into the next orbit is made
without energy expenditures, since the spaceship passes from the sphere
of action of one celestial body to the sphere of action of another.

We shall now describe a typical flight of an interplanetary spaceship.

It starts vertically in order to escape more rapidly into the rarer layers
of the atmosphere. The flight trajectory then curves according to a certain
program (Figure 38), precalculated to give the required altitude H#, and the

* To reach the boundary of the sphere of action of the earth, a somewhat lower velocity, V = 11,16km/ sec,
is necessary,
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required inclination angle 8 of the velocity vector to the horizon at the end
of the initial section.

FIGURE 37, Phases of the trajectory of an interplanetary ship

A8 - Initial flight; gc - circular (elliptical) orbit around the
departure planet (earth); ¢o- flight within its sphere of action;
DE- flight along an elliptical orbit with respect to the sun;

£F - flight in the sphere of action of the destination planet;

Fa - orbital flight around the destination planet; Ow- descent
to the surface of the destination planet.

FIGURE 38, Launching a spaceship into its trajectory

e - angle of inclination of the velocity vector v to the horizon;
H,- altitude at the termination of the initial phase.

To obtain a circular orbit, this angle should be zero, and the velocity
should be the circular velocity for the given height,

The total velocity which has to be given to the spaceship in order to put
it into orbit and overcome the influence of the gravitational field and the
atmospheric drag is called the characteristic velocity. The velocity
required to compensate for the influence of gravity and the atmospheric
drag amounts to about 2 to 3km/sec. In order for the ship to have a final
velocity of 8km/sec, the ship's propulsion system should possess a
characteristic velocity of 10 to 11 km/sec. Similarly, for a final velocity
of 11 km/sec, the required characteristic velocity is 13 to 14 km/sec.
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Using existing chemical fuels, such characteristic velocities can be attained
only by multi-stage rocket systems /2/.

It is possible to calculate the required velocity and angle ® for anelliptical
orbit oriented in any given way. The minimum velocity is required when

AV Vo g

FIGURE 39, Putting a spaceship into
a circular orbit from a transitional
elliptical orbit

Pand 4- perigee and apogee of the
transitional orbit; v, =V, +8v

. . 1 .

is the total velocity required for a

given orbit,

the end of the intial phase coincides with the
apogee. However, to reduce the total energy
losses, it is most advantageous to introduce
the ship into orbit in the region of its perigee.
But since the length of the initial phase is
short, this method is inapplicable if the ship
has to be introduced into an orbit with a
perigee height of several thousand kilo-
meters. In this case the spaceship should
first be introduced into a transitional orbit
with small perigee (Figure 39). At the
apogee it should be given an additional
velocity AV so that it will move on the
preassigned circular orbit around the
earth,

Calculations have been made for intro-
ducing a ship in this way into circular
orbits of different heights with the perigee
of the transitional orbit kept constant.
They show that with increasing height of
the preassigned orbit the total velocity
required first increases, reaching a maxi-
mum value at a circular orbit height of

about 100,000 km. It then decreases tending in the limit to the second

cosmic velocity (Table 11).

Launching of a ship to a greater height requires

a lower total velocity, strange as this may seem.

TABLE 11, Velocities at perigee and apogee of the transitional orbit for introducing
the ship into a circular orbit of a given height (perigee of the transitional orbit

200 km)
Required velocity Additional vele-
Height of the at perigee of the | city at apogee of Total velocity,
given orbit, km transitional orbit, the transitional km/sec
km/sec orbit, km/sec
1000 8,009 0.214 8,223
5000 8.769 0,854 9,623
25,000 10,016 1,467 11,483
50,000 10,424 1,444 11,868
75,000 10,695 1,358 11,963
100,000 10.690 1,276 11,966
125,000 10,749 1,204 11,958
150,000 10,790 1,143 11,933
200,000 10,844 1,045 11,889

Calculation of the initial phase should take into account the diurnal rota-
tion of the earth. It is obvious that launching of the spaceship in an easterly
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direction is more advantageous, since the velocity of the earth's rotation
is added to the velocity given the ship by its propulsion system.

The increment in the ship's velocity due to the rotation of the earth
largely depends on the inclination of the orbit and the altitude height of the
introduction point. It can be approximated by the formula

AV =g (R + Hy) cos i,

where R and o are the radius of the earth and its angular rotational
velocity about its axis; H, is the height of the introduction point; ¢ is the
inclination of the orbit.

The second phase of the trajectory of an interplanetary ship is the flight
along a circular or elliptical orbit around the departure planet (Figure 37).
This period may be used for various purposes. If the interplanetary ship
uses chemical fuel, it may be refueled by '"tanker'' rockets which join it
in orbit. It has even been proposed that large interplanetary rockets be
assembled in orbit from subassemblies flown up by "ferry' rockets. This
would allow the interplanetary ship to be designed for flight in vacuum
only, which would simplify its construction considerably by eliminating
parts needed for atmospheric penetration. In any event, the interplanetary
ship will wait in orbit for favorable radiation conditions in cosmic space
and favorable positions of the departure and destination planets.

From the energy point of view this section is characterized by initial
flight, i.e., the interplanetary ship becomes a satellite of the departure
planet for a while. At the end of the second phase the ship is given
additional velocity for leaving the sphere of action of the departure planet
and for further motion along a preassigned elliptical orbit with respect to
the sun.

The Soviet space probes launched to Venus on 12 February, 1961 and
to Mars on 1 November, 1962 first went into elliptical parking orbits around
the earth. The automatic station "Luna IV", which was launched on 2 April,
1962 was also introduced to a trajectory to the moon from an orbit of an
artificial satellite of the earth. First the interplanetary stations were
introduced into a satellite orbit around the earth, and then into an elliptical
orbit with respect to the sun.

The use of a zero-energy elliptical or circular orbit is feasible for all
interplanetary ships, but particularly for those with chemical rocket
engines. The feature of chemical rockets which makes them suitable is
their high thrust. This allows the velocity increment required to transfer
from an elliptical orbit around the earth to an orbit with respect to the sun to
be generated in a relatively short time.

We may also consider the use of an electron-rocket engine. The best
known form of such an engine is the "ion engine.'" Such an engine has
extremely high exhaust nozzle velocities (up to 200 km/sec) and very low
thrust. Its acceleration is correspondingly low (approximately 1073m/sec?
therefore a spaceship with such an engine cannot transfer from an earth
orbit to a solar orbit in a short time. Such a ship would have a long period
of acceleration after achieving circular orbit which would take it into
increasingly higher circular orbits before achieving solar orbit (Figure 40).

Another engine with a tremendous exhaust velocity and a low thrust is
the ""photon'' engine. It uses the reactive force of a powerful flux of photons
and is capable of accelerating a spaceship to tremendous velocities, close
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to the velocity of light. The idea of the photon engine was proposed by
the German scientist E. Singer, but the creation of such an engine depends
on the solution of a number of very complicated problems.

Quite recently S#nger proposed a new type of photon engine. In this
design the source of photons is a plasma with a temperature of 150,000°C,
obtained by means of atomic energy and compressed by strong magnetic
fields. However, this project is for
the time being only an interesting idea.
Its practical realization is associated
with a number of serious difficulties.
For example, to obtain a parallel jet
of plasma (its normal motion is dis-
orderly) a special reflecting mirror
with very low absorption of the incident
radiant energy is necessary. Ordinary
metallic reflectors are unsuitable as
the coefficient of reflection of radiant
energy falling on them is small.

In some cases the second phase of
the trajectory flight along a satellite
orbit of the departure planet, may be
omitted. In this case, at the end of the
initial phase the ship is given a velocity
which takes it beyond the limits of the
earth's sphere of actionalong atrajectory
with respect to the sun.

Flight in the sphere of action of the
departure planet is along either an
elliptical orbit, whose remotest point is the boundary of the planet's sphere
of action, or along a parabolic, or, finally, along a hyperbolic orbit with
respect to the planet of departure. Thus, for example, if the departure
planet is the earth, it is possible to reach the boundary of its sphere of
action by following an elliptical trajectory whose apogee is on the boundary
of the sphere of action. Such an orbit results from a starting velocity at
the surface of the earth of 11.15 km/sec (disregarding gravitational and
atmospheric drag losses).

As the ship leaves the launch planet's sphere of action, its heliocentric
motion takes place along an elliptical, parabolic, or hyperbolic orbit with
a focus at the center of the sun. The type of orbit depends on the helio-
centric velocity, and the orientation of the orbit in space depends on the
direction of this velocity. As we want the spaceship to fly rigorously along
the calculated orbit, the attainment of the calculated values of the parameters
of the heliocentric exit velocity vector is the most important problem of
space navigation.

The heliocentric exit velocity vector of the spaceship, in the case of
starting from the earth, is equal to the vector sum of the orbital velocity
Vg of the earth and the geocentric exit velocity Viyie (Figure 41).

If the heliocentric exit velocity is lower than the escape velocity for the
given distance of the ship from the sun, the ship will move along-a helio-
centric elliptical orbit. When these velocities are equal, the ship will

FIGURE 40, Additional acceleration
phase of a spaceship with an ion engine
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move along a parabolic orbit, and if the exit velocity exceeds the escape
velocity, along a hyperbolic orbit.

Geocentric trajectory
of the ship

To the sun /

FIGURE 41, Heliocentric exit velocity of a spaceship starting from
the earth

1 and 2- the positions of the earth at the moment of launching and
at the moment of its leaving the sphere of action of the earth.

- -—£ /—\
Xit f . Orbit of the cany

phere of action
ot the earth

FIGURE 42, Two types of heliocentric elliptical orbits in flight to Mars

I- minimum energy semi-elliptic orbit; II- nonminimum energy orbit, resulting
in a shorter flight duration.

Parabolic and hyperbolic orbits require higher exit velocities than
elliptical orbits, and therefore from the energy viewpoint the last is most
economical. Spaceships using chemical fuels will fly along elliptical
orbits. However, flights along elliptical orbits are longer; their
duration even when flying to comparatively close planets may be from
several months to several years. In the future, with the appearance of
powerful atomic and ionic engines, spaceships will fly along shorter
"roads' — along parabolic and hyperbolic orbits.

Suppose it is necessary to fly to a superior planet, for example to Mars,
in a ship using a chemical-fuel engine. Suchashipcanachieve "heliocentric
flight" only along an elliptical orbit. The ship is launched so that on the
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boundary of the earth's sphere of action, the direction of the geocentric exit
velocity coincides with the orbital velocity of the earth, as a result of which
the heliocentric exit velocity is equal to their arithmetic sum. In principle,
two such solar elliptical orbits are apparently possible (Figure 42). The
perihelions of the orbits of the first and second types are situated on the
orbit of the earth. The aphelion is on the orbit of Mars for the first type

of ellipse, and beyond it for the second type of ellipse. It can be easily
seen that as far as flight duration is concerned, the second type is more
advantageous, since the angular length of the flight is less than 180°‘(for the
first type of orbit it is always equal to 180°). However, we already know
that in order to move along a more elongated elliptical orbit (the second in
our case) the heliocentric exit velocity should be higher (Table 12).

TABLE 12, Required velocities at the end of the initial phase at H= 200km
from the earth for various aphelion distances of the orbit from the sun

Required velocity at the end Distance from the sun to the
of the initial phase, km/sec aphelion of the orbit, million km
11,015 168.9
11,515 247.7
12,015 3141
13.015 480.1
14,015 760.3
15,015 1400, 0
16.015 4618, 0

Any number of orbits of the second type is possible, but although they
have shorter flight durations, they all require larger energy expenditures
than the unique orbit of the first type. This is why orbits of the first type
are called minimum-energy ellipses. Sometimes such orbits are also
called semi-elliptical.

Minimum energy orbits have another important disadvantage. As is
known, in shooting a rifle, the longer the range the less the accuracy.
Something similar occurs in space travel. As the range of a spaceship is
increased, the precision of its arrival at the destination decreases.
Conversely, if a given accuracy at destination is required, the vehicle must
be launched with greater precision for longer ranges. This is particularly
important for unguided space probes.

Another constraint exists in the case of minimum energy orbits. As
shown in Figure 42, the earth at the moment of launch, and the destination
planet, at the moment of expected arrival, must lie on a straight line
passing through the center of the sun. In other words, they must lie on the
line of apsides of the heliocentric orbit of the spaceship. This situation only
occurs at certain times.

Favorable moments for a minimum energy flight to Mars occur approxi-
mately every 2.14 years. In 1962, this was from the end of October to the
first part of November.

Orbits of the second type for flight to Mars are possible for periods of
approximately one year with a subsequent interruption of 13 months.
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Let us now consider possible heliocentric elliptical orbits for flight to
inner planets, for example to Venus, or back from Mars to the earth.
The direction of the ship's velocity vector from the boundary of the departure
planet's sphere of action should be opposite to the orbital velocity vector
of the departure planet. The heliocentric velocity of the ship is therefore
equal to the difference between these velocities and the orbit of the ship will
lie inside the orbit of the departure planet. The two orbits are tangential
at the aphelion of the ship's orbit. Only along such orbits is it possible to
fly to inner planets. Interestingly, such flight requires larger energy
expenditures than flight to superior planets. The distance of the perihelion
of such orbits depends on the velocity of the spaceship at the end of the
initial phase (Table 13).

TABLE 13. Required velocity at the end of the initial phase and distance of the
perihelion of the orbit from the sun (height of initialorbit 200km from the earth)

Required velocity at the end Distance of the perihelion
of the initial phase, km/sec from the sup, million km

11,015 132.8

11,516 95.6

12,015 80.3

13,016 61.8

14,015 49,8

15,015 40,9

16,015 33.9

16.7 30.0

Tables 12 and 13 show that if the velocity at the end of the initial phase
exceeds the parabolic velocity by 2 km/sec, the "outbound" ship reaches
a distance of 480.1 million km from the sun (330.9 million km from the
orbit of the earth). In the second case, when flying to inner planets, the
ship approaches to within 61.8 millionkm of the sun, (only 87.7 million km
from the orbit of the earth).

Orbit of the earth Vexi

Yexit

Sphere of action of
the earth

Otbir of the e

FIGURE 43. Two types of heliocentric elliptical orbits for flight to Venus

I- minimum-energy semi-elliptical orbit; I~ nonminimum energy orbit,
resulting in a shorter flight duration,
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Two types of elliptical orbits are possible when flying to inner planets,
too (Figure 43). The orbit of the second type intersects the orbit of the
destination planet, while the orbit of the first type is tangent to the orbit
of the destination planet. The contact point is at the perihelion of the space-
ship's orbit. The tangent orbit requires less energy expenditure since it
is a minimum-energy ellipse. But, as in the case of flight to outer planets,
minimum-energy flight is more prolonged than flights along orbits of the
second type, and requires higher navigational accuracy. All this should be
taken into account in planning flights both of manned spaceships and of
automatic interplanetary stations with scientific equipment. The longer
duration also increases the probability of encountering meteoric bodies
which are capable of injuring the spacecraft. Of course, other factors
should also be taken into account, for example, the scientific purposes of
the launching of the vehicle.

The heliocentric velocity of the spaceship along an elliptical orbit with
respect to the sun is given for any point by the already-familiar formula

2 2 1 2 t
V2= Rogo ("— _T)_fMQ(-r——T) .
where Rg is the radius of the sun; g, is the gravitational acceleration on
the surface of the sun; Mg is the mass of the sun; a is the semimajor axis
of the ship's orbit; r is the distance from the given point of the orbit to the
center of the sun.

FIGURE 44, Positiens of the earth and Venus for a

space flight to Venus along a semi-elliptical orbit
(Hohman's calculated trajectory)

1 and I - the positions of the earth and Venus at the
starting moment of the ship; Il and II- Venus'
conjunction; IIl and III - the positions of the earth
and Venus at the moment of the ship's arrival at
Venus,

As an example let us consider the flight of the first automatic inter-
planetary station (AIS) to Venus, launched in the Soviet Union on 12 February,
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1961. Its heliocentric flight was close to a semi-elliptical orbit, corres-
ponding to a minimum-energy ellipse (Figures 44 and 45).

Direction of the

vernal equinox r

FIGURE 45, Orbir of the first automatic interplanetary
station ( AIS) with respect to the sun

I and I- positions of the earth and Venus at the start-
ing moment of the AIS; II and 1I- the moment the

AlS approaches Venus; 1, 2,,,.,10 - the successive
positions of the AIS with respect to the earth and
Venus,

First the AIS was introduced into an approximately circular parking
orbit with a perigee of 230km, an apogee of 287 km, and an inclination of
65°. At a precalculated point of the orbit the AIS was accelerated to a
velocity 0.661 km/sec higher than the second cosmic velocity.

Inside the earth's sphere of action the AIS moved along an orbit close to
a hyperbola. It reached the boundary of the sphere of action on 14 February
at 2300 hours Moscow time. Its velocity with respect to the earth there
was about 4km/sec. Its velocity with respect to the sun, equal to the
vector sum of the earth's orbital velocity and the spacecraft's velocity with
respect to the earth at the boundary of the earth's sphere of action, was
27.7km/sec. We recall that the mean orbital velocity of the earth with
respect to the sun is 29.8km/sec.

The AIS then proceeded along an elliptical orbit with one of the foci at
the center of the sun. The distance of the orbit's aphelion from the sun was
151 million km, and the distance of the perihelion, 106 million km. The
inclination of the orbit to the plane of the ecliptic was 0.5°. The orbital
planes of the earth, Venus, and the automatic interplanetary station are
slightly inclined with respect to each other. In Figure 45 the orbit of the
A1S is shown projected on the plane of the earth's orbit, The simultaneous
positions of the earth and the AIS, and of the AIS and Venus are connected
by straight lines. As seen from the figure, at the start of the flight the AIS
lagged behind the earth (positions 2 and 3). Not long before the vernal




equinox, 21 March, the earth, the AIS, and the sun were all situated
approximately on a straight line (position 4), and then the AIS in its angular
motion around the sun overtook the earth (positions 5, 6, and subsequent
ones).

The AIS steadily drew away from the earth and at the moment of approach
to Venus was 70 million km distant. Measurements of the orbit indicated
that the AIS passed at a distance of 100,000 km from Venus. The moment
of closest approach was on 19 to 20 May, 1961. Thus, the flight time of the
AIS until the approach to Venus was slightly more than three months. The
high accuracy with which the AIS was launched into orbit is an outstanding
achievement of Soviet astronautics.

Unfortunately, it was not possible to complete this highly interesting first
experimental flight from the earth to another planet, due to the interruption
of radio communication with the AIS. This launching, and that of the AIS
"Mars I", indicate the success of powerful Soviet rocket systems and highly
accurate guidance systems in pioneering flights to other planets.

We shall conclude the characterization of the heliocentric flight section
of a spaceship by considering the flight duration. We note at once that the
duration of this section of the trajectory is considerably longer than the
duration of its other phases. The total flight duration to other planets will
therefore be determined mainly by the flight time along the heliocentric
orbit.

For flight along a semi-elliptical orbit, the flight duration will be equal
to half the period of revolution:

t__i__ n3ad
*2_‘1/ Mg

where a is the semimajor axis of the orbit.

This flight time even to the nearest planets is comparatively long (Table
14). Therefore, in a number of cases it is necessary to plan the flights
along orbits of shorter duration, although they require larger energy
expenditures. Calculations show that in this case the flight duration can be
shortened by a factor of 2 or more (Table 15). However, specialists think
that the use of such orbits is connected with the problem of creating new
powerful engines for spaceships running on nonchemical fuels.

TABLE 14, Velocity at the end of the initial phase at
H = 200km and the flight duration along a semi-elliptical
orbit until arrival at a planet of the solar system

Velocity at end Flight duration
Planet of initial phase, | until arrival atthe
km /sec planet, years
Mercury 13,31 0.29
Venus 11,25 0,40
Mars 11.35 0,71
Jupiter 14 .05 2.72
Saturn 15,03 6.04
Uranus 15,73 16.0
Neptune 16,00 30.6
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TABLE 15. Velocity at the point of entering an elliptical orbit with
respect to the sun and the flight duration for various angular distances

Velocity at the moment
of entering an elliptical Angular distance, Flight duration,
orbit with respect to the degrees months
sun, km/sec
To Venus
27.28 180 4,817
26,28 110 3,33
25,28 89 2,83
24,28 16 2.62
23,28 66 2,33
22,28 59 2,18
To Mars
32,71 180 8,63
33,711 124 5.26
34,71 108 4,32
35,71 97 3,71
36,71 90 3,40
37.71 85 3,10

FIGURE 46, Positions of the earth and Mars for flight
to Mars along a semi-elliptical orbit

I and I- positions of the earth and Mars at the starting
moment of the ship; II and II- at the moment of arri-

val on Mars.

For flight from the earth to another planet, the moment of launching of
the spaceship should correspond to a favorable po$ition of the planet with
respect to the earth. For example, positions of Mars favorable for flights,
as shown in Figures 46 and 47, occur approximately once every 2.14 years,
and favorable positions of Venus, once every 1.57 years. It is also neces-
sary to wait for a favorable position of the planets when returning to the
earth, which considerably increases the total duration of round-trip interplanet-

ary flight.
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According to one set of calculations, after reaching circular orbit around
Mars, or after landing on it, the waiting time for a return start to earth is
452 days. The total flight duration from the earth to Mars and back again
amounts in this case to 970 days, or 2 years 8 months.

Line of nodes of the
orbit of "Mars-1"

7 'Direction of vernal
equinox

FIGURE 47, Orbits of Mars and of the AIS "Mars 1" projected
on to the plane of the earth’s orbit. The simultaneous
positions of the earth and Mars (I and I- at the moment of
launch, and II and II- at the moment of approach of the AIS
to Mars) and the positions of the station itself between the
moments of launch and approach are joined by lines. Due
to the noncoplanarity of the orbits of the earth and Mars, the
station, as it approaches Mars, is put into an orbit with an
inclination of 2°37", approximately that of the orbit of Mars

Let us now consider the section of the flight of a spaceship in the sphere
of action of the arrival planet. The motion of the spaceship in the sphere
of action of the arrival planet is determined by its heliocentric velocity on
the boundary of this sphere and by the orbital velocity of the planet itself.

Let the ship have a heliocentric velocity Vey on the boundary of the sphere
of action of the arrival planet (Figure 48), and let the heliocentric orbital
velocity of the arrival planet be Vob. To determine the velocity of the ship
with respect to the arrival planet it is necessary to subtract the arrival
planet's velocity from the ship's entrance heliocentric velocity vector.

If the resultant velocity V’e, is lower than the escape velocity at the
boundary of the sphere of action, the further motion of the ship with respect
to the arrival planet will be along an elliptical trajectory. If V., equals
escape velocity, the motion will be along a parabola, and if it exceeds
escape velocity, the path will be a hyperbola. Thus the magnitude of the
entrance velocity Vi determines the ship's orbit within the sphere of
action of the destination planet.
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In principle, the spaceship can approach the boundary of the sphere of
action of a celestial body with a heliocentric velocity close to zero. It is
obvious that in this case the magnitude of the velocity V;m will be close to
the orbital velocity of the planet, but oriented in the opposite direction.

The minimum value of V%, occurs when the spaceship is moving opposite
to the planet's orbit. In this case, V%, equals the algebraic sum Vyp— Vent,
But this will usually require an additional maneuver of the ship, so in most
cases Vi, will be equal to or greater than V., The following ratio serves
as an index of the form of the orbit inside the sphere of action of the
destination planet

f=— 0
¥, (sp.ac.)

where Vi, (sp.ac.) is the escape velocity on the boundary of the sphere of
action of the destination planet.

Planet -Vorb

FIGURE 48, Determination of the velocity of a space-
ship on the boundary of the sphere of action of the
arrival planet

1-heliocentric trajectory; 2- trajectory in the sphere
of action of the arrival planet.

Only for & <1 is elliptical motion of the ship with respect to the destina-
tion planet possible.

Thus, for example, in the case of Venus the orbital velocity is 34.99 km
and the zero-height escape velocity is 10.2 km/sec. On the boundary of the
sphere of action the escape velocity will be lower and the index g will be
larger than 1. Consequently, spaceships which fall into the sphere of
action of Venus move within it along hyperbolic orbits. Such was the motion
of the first Soviet automatic interplanetary station to Venus within its sphere
of action.

The same can be said about the earth, whose orbital velocity is
29.8km/sec, and whose escape velocity at the surface is 11.2 km/sec.

Ships returning to the earth from outer space will move along hyperbolic
orbits inside its sphere of action.

It is obvious that the value of ¢ will decrease for planets situated further
and further from the sun, resulting from a decrease in their orbital
velocities. However, a definite role is played in this matter by other fac-
tors too, and a qualitative estimate of the extent of variation of the index
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t for outer planets, particularly for the giant planets Jupiter, Uranus,
and Saturn, is difficult.

Orbit of the
\ DPlanet

FIGURE 49, Entrance and exit velocities of a space-
ship on the boundary of the sphere of action of the
destination planet. Perturbation maneuver:

1- heliocentric trajectory; 2- trajectory in the sphere
of action of the planet; I and II- positions of the planet
and its sphere of action at the entrance and exit moments
of the ship.

The ship'’s encounter with the destination planet is independent of the
form of the orbit, if the latter passes at a distance from the planet's center,
which is less than its radius. It is obvious that if the distance is larger
than the radius of the destination planet, the ship does not meet the planet.
Along parabolic and hyperbolic orbits the ship will emerge from the planet's
sphere of action and will continue moving along an orbit with respect to the
sun,

It is interesting to note that in the case of parabolic or hyperbolic motion
in the sphere of action of a planet, the velocities Vg, at the point of entrance
to the sphere of action and V%,; at the point of exit from the sphere of action
are equal in magnitude, but have different directions (Figure 49). Let the
point A, be the point of entrance of the ship into the sphere of action of the
planet. The heliocentric velocity Vg, of the ship at this point is determined
by the tangent to the heliocentric trajectory. The "planetocentric" velocity
Vem (the velocity with respect to the planet) is equal to the vector sum of
the entrance heliocentric velocity and the orbital velocity of the planet,
taken with an opposite sign. The velocity v/, , determines the motion of the
ship with respect to the destination planet along the hyperbolic orbit A,B.

When the ship approaches point B the planet is at the point P1, andpoint
B coincides with the point A4, the point of exit of the ship from the sphere
of action of the planet. At this point the exit "planetocentric' velocity Ve,

is equal to the entrance "planetocentric' velocity v, , but their directions
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are different. This is due to the fact that the points A4,and B of the 'planet-
ocentric'' trajectory are symmetric with respect to the planet.

We may now examine the exit heliocentric velocity of the ship. For this
purpose the vectors Ve, and V,, at the point of exit must be added.

As can be seen from Figure 49, the entrance V., and exit Vexit helio-
centric velocities of the spaceship are different both in magnitude and in
direction. This can be used in space flight for maneuvering the spaceship
without any fuel expenditure.

This type of spaceship maneuver, i.e., flying along a parabolic or hyper-
bolic orbit in the sphere of action of some celestial body, is called a
perturbation maneuver.

FIGURE 50, Direct 1 and retrograde II motion of a spaceship inside
the sphere of action of the destination planet

We draw the reader's attention to another important fact connected with
the motion of a spaceship in the sphere of action of the destination planet.
Depending on the position of the entrance point of the spaceship to the sphere
of action of the destination planet, its motion with respect to the destination
planet can be direct as well as retrograde (Figure 50).

This should be taken into account in planning the flight, particularly
when it is necessary to land on the surface of a planet having a high
rotational velocity about its axis.

Parabolic and hyperbolic trajectories for flying around the destination
planet will obviously be used for automatic interplanetary stations in order
to study the nearest planets of the solar system. For spaceships launched
with the purpose of a prolonged study of the planet, and in the future also
for landing on it, these trajectories are inadequate. The best orbits inside
the sphere of action are elliptical with direct motion, and therefore the
problem of transfer from parabolic and hyperbolic to elliptical orbits arises,

This transfer can be accomplished only by either reducing the ship's
velocity with respect to the destination planet, or by reducing and simul-
taneously changing the orientation of the ship's velocity vector (Figure 51,
points A and B).
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Thus, a spaceship can be transferred to an elliptical and even to a
circular orbit with respect to the destination planet, either for a prolonged
study, or for subsequent descent to the surface. Direct descent to the
surface of the destination planet from parabolic and hyperbolic orbits is
also possible.

FIGURE 51, Possible variations in transfer to an elliptical orbit
with respect to the destination planet (AV- the decrease in the
velocity by application of reverse thrust)

Finally, the last phase of the trajectory of an interplanetary flight is
descent to the surface of the destination planet. This is the most complicated
problem of interplanetary flight. For example, atthe time of landing,
the spacecraft with the dogs Belka and Strelka had a velocity of 0.06 to
0.8km/sec, whereas in orbit at a height of 300km, its velocity was about
8km/sec. Consequently, on the descent section, the flight velocity has to
be reduced by a factor of one thousand or more /22/. This example indi-
cates the difficulties which the scientists face in solving this problem.

The problem of a safe landing on the surface of the destination planet
can, in principle, be solved in two ways: by means of rocket engines and
by using aerodynamic forces, or by a combination of the two. However,
it should be borne in mind that aerodynamic forces can be used only when
the destination planet has a sufficiently dense atmosphere (earth, Venus,
and others).

The first method of landing requires large energy expenditures, first,
to reduce the velocity of the ship, and second, to compensate for the
gravitational force on the descent phase. The relative energy expenditures
for descent by the first method can be determined from the magnitude of
the characteristic velocity, equal to the sum of the ship's velocity with
respect to the destination planet at the beginning of the descent phase, and
the compensation velocity for the gravitational force (Table 16).

The high characteristic velocity of the descent phase is one of the
reasons for the small payloads of ships with engines using existing chemical
fuels. Thus, for example, when using propellant with an exhaust velocity
of 4000 m/sec, the ratio of the payload to the weight of the whole ship
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amounts, in the case of landing on the earth and on Venus, to less than 10%,
on the moon, from 30 to 60%, and on Mars, from 15 to 30%. In the case of
landing on Jupiter and Saturn, the weight of the payload will be practically
zero [2/.

TABLE 16. Examples of characteristc velocities for landing on
the surface of the earth, the moon, and other planets

Characteristic landing velocity, km/sec

from a parabolic from a circular

Planet orgit orbit at a height

of 1000 km

Earth .. ...... 13.0 8,1
Venus. . ... ... 12.0 7.4
Mars .. ...... 5.8 3.4
Jupiter ... ..., 68.5 46.0
Saturn. ... ... 41.0 27.5
Themoon . .... 2.5 1.5

If there is an atmosphere at the destination planet it can be used for
descent by the second method. Two types of descent with aerodynamic
braking are possible: descent along a ballistic trajectory and descent along
a gliding trajectory. In the first case the ship without lifting surfaces
moves with a zero angle of attack.

The disadvantages of this method are the tremendous braking decelera-
tions and very high final velocities of the spaceship. For safe landing in
this case, braking parachutes have to be used. In addition, such a descent
is accompanied by the release of a huge amount of energy. The kinetic
energy possessed by the spaceship is transformed into heat. As a result
of this, the temperature of the air-stream flowing around the ship rises
and the body of the ship is intensely heated. Thus, according to one calcu-
lation, for each kilogram of weight of a ship descending to the surface of
the earth, about 5500 kcal are released. Even for a ship of comparatively
small weight, about 450kg, a huge amount of heat is released — as much
as 2.5 million kcal. This energy is sufficient to destroy a ship of any
normal construction /22/.

One of the effective ways of dissipating the heat received by the space-
ship is to use a protective layer for the body. This layer, also called an
ablative shield, consists of a material which absorbs a great amount of
heat in melting and evaporating. One such material is beryllium oxide.
For thermal protection of a ship weighing 450 kg descending in this way to
the earth, it is necessary to evaporate approximately 210 kg of beryllium
oxide /22/.

Another method for combating the thermal danger on the descent phase
is to give the spaceship a special aerodynamic form. It is assumed that
for this purpose the best configuration is a blunt nose. With this form,
compression and intensive heating of the air essentially occurs in front of
the ship, and the forward section of the ship is heated to a comparatively
low temperature (1100 to 1300°). The rest of the ship's surface is outside
the zone of intensive air heating and therefore remains practically
unheated /22/,
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What is the possible temperature rise in the zone of air compression in
front of a descending ship? In foreign literature the following data are
given for a spaceship in the form of a disk, entering the earth's atmosphere
at an angle of 45° to the horizon with a' velocity of about 11.2 km/sec: the
pressure on the frontal surface of the ship facing the stream exceeds the
pressure of the surrounding air by a factor of 1085, and the temperature
may reach 50,000°,

The higher the relative entrance velocity into the atmosphere, the higher
the rate of heat production. Trajectories of spaceships therefore should be
planned so that the entrance of the ship into the dense layers of the atmos-
phere will be in the direction of the diurnal rotation of the destination planet
with its surrounding atmosphere.

Gliding descent at small negative inclination angles of the velocity vector
to the horizon makes it possible to reduce gradually the velocity of the ship
under low braking deceleration and comparatively little heating of the ship's
body. In addition, a gliding descent makes possible range and direction
maneuverability for landing at a fixed point on the surface of the destination
planet. The duration of a gliding landing and correspondingly the distance
covered naturally exceed those of descent along a ballistic trajectory.

It is possible to begin a gliding descent from those heights where the air
density provides sufficient lifting force. If the lifting force of the wings is
small, rocket engines giving vertical thrust must be started in order to
avoid an excessively steep descent and the resulting large braking loads
and heating of the ship. In addition, this method of descent involves
tremendous technical difficulties. It is necessary first of all to ensure
stability and control of the ship within a very wide velocity range from the
huge cosmic to low landing velocities, which clearly requires supporting
surfaces of variable area. The external shell of the ship must also with-
stand heating to between 1500 and 2000°,

FIGURE 52, Descent trajectories of spaceships:

1- descent phase outside the dense layers of the atmosphere; 2- atmos-
pheric phase of the trajectory in the case of ballistic descent; 3- atmos-
pheric phase of the trajectory in the case of gliding descent.

The possible descent trajectories of a spaceship to the surface of the
earth from a circular orbit depend on the additional velocity AV which is
given to the ship in the direction opposite to its orbital motion. The angle
of entrance into the atmosphere also depends on the magnitude of this
velocity (Figure 52). The higher the additional velocity, the larger the
entrance angle. For a velocity of 0.2 to 0.3 km/sec, the entrance angle is
a few degrees. Subsequent motion follows either a ballistic or a gliding
trajectory.
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On 19 August, 1960, the second Soviet spaceship with living beings on
board was launched into orbit as an earth satellite. The command for
landing in a designated region was given on the ship's 18th revolution. From
this moment until an altitude of 7 km above the surface of the earth was
reached, the ship traversed a distance of 11,000km. The maximum decel-
eration under braking reached 10 g. At a height of 7 to 8 km the container
with the animals was catapulted from the ship's cabin., The container landed
at a velocity of between 6 and 8 m/sec, and the ship's cabin, at 10 m/sec.
The deviation of the actual from the designated landing point amounted to
less than 10 km, a testimony to the successful solution of the extremely
complicated problem of descent to the surface of the earth. This experience
will be of assistance in solving the problem of descent to the surface of
other celestial bodies.

It should be noted that all our considerations were based on the assump-
tion that the planes of the orbits of the departure and destination planets
coincide. This is however not completely true, as can easily be seen by
comparing the inclinations of the orbits of the planets of the solar system
(see Figure 11),

The fact that the planes of the orbits of the departure and destination
planets do not coincide, or are noncoplanar, creates additional difficulties
in the execution of interplanetary flights. It requires maneuvering the ships
in flight, and consequently, the solution of a series of additional navigational
problems.

§7. Flight Trajectories to the Moon

In view of the comparatively short distance from the earth to the moon,
the first spaceships flying to other celestial bodies will go to the moon. In
fact, the minimum distance from the earth to Mars is 54 million km,
whereas the mean distance from the earth to the moon is only 384,400 km,
i.e., over 135 times shorter than the distance to Mars. It should also be
noted that the trajectories of spaceships do not follow the shortest distances
between celestial bodies.

In principle, various types of flight to the moon are possible: direct
flight to the moon, flight around the moon with return to the earth, orbital
flight around the moon, and flight to the moon with entrance into the orbit
of an earth satellite.

For each of these types both direct starts from the earth and starts from
an orbit around the earth are possible. The initial phase and orbital flight
around the earth have already been described in the previous chapter.
Therefore, we will not deal with them here, and will refer for simplicity
to a ship starting directly from the earth.

The first type is a direct flight to the moon. For flying from the earth
to the moon orbits of any form can in principle be used. However, as in
the case of interplanetary flights, orbits which require minimum energy
expenditure are of particular interest. These earth-satellite elliptical
orbits whose apogees coincide with the orbit of the moon (Figure 53a).

When starting from point 4 of the terrestrial surface, the launch point
is the perigee of the orbit, When starting from point B, the perigee is
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situated inside the earth (#;), and when starting from point C, the elliptical
orbit is transformed into a rectilinear one. The perigee of this orbit is
situated at the center of the earth. These three orbits are not equivalent
from the energy point of view. The smaller the semimajor axis of the orbit,
the lower the energy expenditure in moving along it. Consequently, the
most advantageous is the third orbit. However, as is shown by calculations
the difference in energy expenditure for the first and third orbits is very
small, and can be practically neglected. In fact, the required initial
velocity for flight along the third orbit is approximately 11.09 km/sec, and
along the first orbit, 1 to 2m/sec more, which amounts only to hundredths
of a percent.

Thus, in spite of the fact that for each starting point on the earth there
is an elliptical minimum-energy orbit, they all require practically the
same initial velocity — about 11,09 km/sec. This is approximately 1% lower
than the second cosmic velocity for the surface of the earth. There are
also other orbits along which lunar flight is possible (Figure 53b): an
elliptical orbit for landing on the opposite side of the moon, and parabolic
and hyperbolic orbits.

’

Orbit of the moon

Earth
4 |A Earth

a b

FIGURE 53, Orbits for flights to the moon in the case of a ship starting directly
from the surface of the earth

a- minimum-energy elliptical orbits; b- other orbital types; 1 and 2- ellip-
tical orbits starting from the points 4 and B; 3- radial trajectory; 4- elliptical
orbit for landing onthe opposite side of the moon; 5- parabolic orbit;

6- hyperbolic orbit (IV, V, and VI - positions of the moon at the moment of
launching for flight along orbits 4, 5, and 6, respectively).

It is perfectly clear that hyperbolic and parabolic orbits give shorter
flight periods to the moon. What is the possible duration of such a flight?

Along minimum-energy orbits it is practically the same, i.e., for the
mean distance from the earth to the moon, approximately 5 days. When
flying along orbits requiring higher initial velocities, the flight duration
sharply decreases. Thus, for an initial velocity which is higher than the
minimum by only 0.05km/sec, the flight duration is reduced by a factor of
two, For an initial velocity equal to the second cosmic velocity, which
corresponds to a further increase in the velocity by approximately
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0.05 km/sec, the flight duration to the moon is two days, and for an initial
velocity exceeding the escape velocity by 0.5 km/sec only one day. However,
further increases in the velocity result in a proportionately smaller and
smaller decrease in the flight periods.

When flying along any orbit, as the lunar ship gets farther from the
earth, its geocentric velocity continues to decrease. The instantaneous
value of the velocity can be determined by the formulas given above (§3,
this chapter).

Let us now consider the motion of a spaceship in the sphere of action of
the moon. The entrance selenocentric velocity, as we now already know,
is equal to the vector difference of the geocentric velocity of the ship on the
boundary of the moon's sphere of action and of the orbital velocity of the
moon,

The orbital velocity of the moon is approximately 1.02 km/sec, and the
escape velocity on the boundary of its sphere of action is Ve (sp.ac.) =
= 0.385km/sec. Therefore the index of the orbit form inside the moon's
action is £ > 1. This indicates that inside the lunar sphere of action
characteristic orbits are hyperbolic. Consider the case where the ship has
a geocentric velocity equal to zero on the boundary of the sphere of action.
Its velocity with respect to the moon, the selenocentric velocity, is there-
fore equal to the velocity of the moon in its orbit around the earth, i.e.,
1.02km/sec, which considerably exceeds the escape velocity on the
boundary of the lunar sphere of action.

orb

L,
2

Vory

Vent

FIGURE 54, Hyperbolic trajectories for different entrance points of a space-
ship into the lunar sphere of action

Thus, at a distance of 66,000 km from the moon the ship enters its sphere
of action, and its further motion with respect to the moon will be along a
hyperbolic orbit (Figure 54). The form of the orbit depends on the position
of the entrance point into the lunar sphere of action.
It is obvious that the ship will meet the lunar surface if its orbit
approaches the moon's center at a distance smaller than its radius (1740 km).
All the previous considerations did not provide for a modification of the
ship's orbital parameters and for guiding it on the orbital section. The
accuracy to which the calculated orbital and basic launch parameters can
be maintained is therefore of interest.

We shall give for this purpose some calculated figures. An error in the
initial velocity of a lunar ship of only 1 m/sec, i.e., approximately of
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0.01%, results in a deviation of the point of the ship's encounter with the
moon by 250km. A deviation of the initial velocity vector from the calcula-
ted direction by 1 minute of arc results in a displacement of the point of
encounter by 200 km. To be sure of hitting the moon, the error in the
initial velocity should not exceed a few meters per second, and the inclina-
tion of the initial velocity vector should be within 0.1° /6/.

Launching at the exact calculated moment is necessary because the plane
of the trajectory of the lunar ship turns in space together with the earth,
and also because the moon in its daily motion moves among the stars at the
rate of 13.2° per day. An error of 10 sec in the launching moment results
in a displacement of the point of encounter by 200 km,

These data show the extremely stringent requirements on the accuracy
of the guidance systems of spaceships in the initial phase and on the
organization and preparation of the launching.

The possibility of guiding a spaceship on the orbital flight phase, i.e.,
on the passive phase of the trajectory, allows us to reduce considerably the
requirements on the accuracy of the launch parameters of the rocket.
However, correction of the orbit of the spaceship requires an accurate
determination of its current coordinates. This is one of the basic problems
of space navigation. The possible methods of its solution will be shown in
the following chapter.

Lunar orbit

FIGURE 55, Flight trajectory of the second Soviet lunar rocket

1- position of the moon at the launching of the rocket; 2- position of a hypo-
thetical comet on the rocket trajectory.

A brilliant example of flight to the moon is the flight of the Soviet lunar
rocket, launched on 12 September, 1959. We recall some of the data of
this first flight to the moon. The last stage of the rocket exceeded the
second cosmic velocity, and it therefore followed the rocket along a hyper-
bolic orbit (Figure 54). The velocity of the rocket with respect to the earth
on the boundary of the moon's sphere of action was about 2.31 km/sec.
Inside the moon's sphere of action, at a distance of 1000 km from its surface,
the rocket's velocity with respect to the moon was 2.97 km/sec.

The rocket entered the moon's sphere of action on 13 September, at
16 hrs 40 min, Moscow time, and at 0 hrs 02 min 24 sec on 14 September
it reached the lunar surface. The duration of the flight was approximately
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one and a half days. The rocket container with the instruments landed near
the craters Aristullis, Archimedes, and Autolycus. The distance from the
landing point to the center of the visible disk of the moon was approximately
800 km. At the moment of impact, the trajectory was inclined at an angle
of 60° to the surface of the moon, and the selenocentric velocity was about
3.3km/sec.

140 Lunar orbit

FIGURE 56, Trajectory of a flight around the moon according to K, Erik and
G.Gamow (USA) (the figures give the flight time in hours from the launching
point; the broken curve gives the orbit of the same spaceship disregarding the
moon's influence)

Let us now consider the motion of a spaceship along trajectories taking
it around the moon. By this we will understand those which take the ship
beyond the orbit of the moon with subsequent return to the earth., Such
trajectories (Figures 56 to 59), as well as trajectories leading to a landing
on the moon, are of definite scientific interest for investigation of the moon
and the space near the moon. These will probably remain the only ones
for manned spaceships for a long time, since impacting trajectories require,
first of all, "'soft landing, " and, secondly, take-off from the moon in order
to return to the earth. The solution of the latter problem is for the time
being distant; but the time will doubtless come when spaceships will start
from lunar cosmodromes to the earth and other planets.

The idea of flying around the moon was first proposed by Jules Verne in
his novels ""From Earth to Moon' and ""Around the Moon." His heroes
Barbiken, Nikolai, and Ardan, fly around the moon inside an artillery
projectile. Now lunar flight no longer seems fantastic, but powerful rocket
engines, rather than artillery, make it a possibility. It is obvious that
before long Soviet astronauts, like Jules Verne's heroes, will actually make
a remarkable journey around the moon,

Now it can be stated that the geometrical form of the moon-orbiting
trajectory, particularly where it passes through the-sphere of action of the
moon, can be most varied with respect to the earth. It was shown in the
previous section that the exit velocity with respect to the destination planet
is equal to the entrance velocity. This also holds true on the moon. But
with respect to the earth, both the magnitude and the direction of the exit
velocity may be different. Therefore, the trajectory of a vehicle after
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leaving the moon's sphere of action will in general differ both in form and
position with respect to the earth from the trajectory of flight to the moon.
Very small deviations from the calcula-
Lunar orbit ted point of entrance of the spaceship
to the moon's sphere of action, as well
as small deviations of the velocity vector
may lead to a considerable deviation of
the actual return orbit from the predicted
one. This situation complicates the
accomplishment of a flight around the
moon with return to the earth. Such a
flight is apparently possible only on a
guided ship, which can determine the
errors in the motion parameters and
correct the actual trajectory.

When flying along a symmetrical
trajectory around the moon (Figure 57),
after leaving the earth's sphere of
action the ship will fly identically on

g ; the two branches of the trajectory.

around the moon according to M, S, Lisovskaya However. if on returning it does not

(USSR). The minimum distance of the trajec- ’ g

tory from the moon is 6378 km meet the earth (second and fourth
cases), it intersects the outbound branch
of the flight trajectory to the moon at

some angle. As a result of this, it can no longer fly along the previous

trajectory to the moon. Such trajectories are called unclosed.

A peculiarity of the trajectories shown in Figure 58 is the fact that their
last section is radial, directed to the center of the earth. This "alignment'
of the trajectory is made by the moon. As can be seen, such trajectories
are possible both in the case of a close approach to the moon (the upper two
trajectories) and in the case of a comparatively distant approach (the lower
trajectories). The flight time along round-the-moon trajectories which
come near the moon is 5 to 10 days.

Trajectories with a radial return section and symmetric trajectories
have the disadvantage that they do not provide for a possibility of safe
descent of the spaceship to the surface of the earth. We already mentioned
the necessity of a slanting descent at small angles to the horizontal. The
problem of the calculation of a trajectory around the moon with entrance
into the terrestrial atmosphere at small angles is called the special problem
of flight around the moon. Some of the possible trajectories for flight
around the moon with slanting return to the atmosphere, obtained by V. A.
Egorov, are shown in Figure 59.

A disadvantage of trajectories which come near the moon is that they
impose stringent requirements on accuracy in achieving the calculated
launching parameters.

Thus, for one of the round-the-moon trajectories with an initial velocity
of 10.92739 km/sec, the ship should pass 12,900km from the center of the
moon and return to the earth. If the initial velocity is lower than the
calculated value by only 10 m/sec (0.01 km/sec) or if the direction of the
initial velocity vector varies by 5° above the horizontal, the ship will either
collide with the moon, or will not pass over the center of the hidden side
of the moon /19/.

FIGURE 57, Trajectories of symmetrical flight
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FIGURE 58, Orbital trajectories with radial section in

the return flight to the earth, calculated by V. A, Egorov
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As the minimum altitude of the trajectory to the moon increases, the
requirements for the accuracy of the launch parameters become less
stringent,

Trajectories of periodical flight around the moon are of great scientific
interest (Figure 60). The period of revolution of the satellite ship of the
earth along the upper orbit is exactly half the revolution period of the moon
around the earth, Therefore, after one '"idle' revolution without flying
around the moon, on the next revolution the ship passes the moon. The
ship flies around the moon once every sidereal month.

The revolution period of the satellite~ship along the lower orbit is 2/5 of
the revolution period of the moon (2/5 of a sidereal month).

4846376 km

FIGURE 60. Trajectories for periodical flight around the moon with
return to the earth, according to A, Shternfel'd (USSR), calculated
without taking into account lunar influence

An example of a practical solution of the problem of flight around the
moon is the flight of the third Soviet cosmic rocket, launched on 4 October,
1959 (Figures 61, 62, and 63). The objective of the mission was to obtain
photographs of the opposite side of the moon and to transmit them to the
earth, and therefore a number of special requirements were imposed on
the flight trajectory. The distance at the photographing moment could not
exceed 60 to 70 thousand km, For normal operation of the camera orienta-
tion system during the photographing of the moon, the station and the moon,
and the sun had to lie approximately on one straight line. The flight
trajectory also had to make it possible for ground receiving points in the
USSR to receive the maximum amount of information from the station on the
first revolution, preferably at short distances from the earth.

In addition, to carry out a program of scientific investigations, it was
desirable to obtain a trajectory along which the automatic station would fly
for a sufficiently long time after going around the moon.

As can be seen from Figure 63, the automatic stations passed at a
distance of 7900 km from the center of the moon. Atthe momentof maximum
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Equator

FIGURE 61. Spatial scheme of the flight trajectory of the AIS to the moon

I, 11, and IlI- positions of the moon on its orbit at the moments when the AIS started,
approached the moon, and returned to the earth, respectively,
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FIGURE 62, Form of the trajectory of the AIS from the direction of the vernal equinox. The positions of
the AIS and of the moon on the orbits are given for 4300 hours Moscow time each day
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approach, the station was situated south of the moon (Figure 62). Due to
the moon's attraction, the station's trajectory was then deflected to the
north. The deflection was so large, that the return to the earth was from
the northern hemisphere. After flying past the moon, the height of the
station above the horizon for observation points in the northern hemisphere
increased each day. As another result, the possible time intervals for
direct radio communication with the station increased.

Photographing of the!
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FIGURE 63, Projection of the orbit of the AIS on the plane of the terrestrial
equator. The positions of the AIS and of the moon on the orbits are given for
0300 hours Moscow time each day

In returning to the earth on the first revolution, the station approached
to a distance of 47,500 km, i.e., outside the dense layers of the terrestrial
atmosphere, and continued its flight along an elongated orbit, nearly
elliptical. The greatest distance of the station fromthe earthwas 480,000 km.

Due to the perturbing action of the sun, the height of the orbit's perigee
gradually decreased and after several revolutions, in returning to the earth,
the station had to enter the dense layers of the atmosphere and was
destroyed.

Artificial satellites of the moon, like those of the earth, make it possible
to obtain valuable scientific information on our nearest cosmic neighbor.

In the following example we show the possibility of creating an artificial
satellite of the moon, in principle.

Suppose a spaceship moves along an elliptical trajectory (Figure 64), so
that, at apogee on the boundary of the moon's sphere of action, its geo-
centric velocity is approximately 0.2 km/sec. At this point the ship's
velocity increased by means of a rocket engine to 0.8km/sec. As can be
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seen from the velocity triangle, the entrance selenocentric velocity becomes
approximately 0.24 km/sec. This velocity and its direction make the ship
move along an elliptical moon-satellite orbit. However, the orbit of such

a lunar satellite leaves its sphere of action, and therefore it can be assumed
that on the first revolutions the ship will no longer be a satellite of the
moon.
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FIGURE 64, Possible scheme of launching a spaceship into an orbit of
a temporary satellite of the moon; AV is the additional velocity given
by the engine’s thrust

Other ways of solving the problem of the creation of an artificial satellite
of the moon are possible. For example, it is possible to create a satellite
moving along a circular orbit on the boundary of the lunar sphere of action.
The necessary launching conditions and required velocity movement on the
boundary of the lunar sphere of action are readily determined.

We now consider briefly the conditions and trajectories for take-off
from the moon in order to return to the earth. In order to reach the
boundary of the sphere of action of the moon, a spaceship starting from its
surface should be given a velocity of 2.344 km/sec, But with this initial
velocity the ship will not return to the earth, because it will reach the
boundary of the lunar sphere of action with zero selenocentric velocity. But
since in this case the velocity of the spaceship with respect to the earth
(its geocentric velocity) will be equal to the orbital velocity of the moon,
1.02km/sec, the ship will become an earth satellite.

Even take-off from the moon with the required escape velocity does not
make it possible to return to the earth. In this case, the selenocentric
velocity on the boundary of the lunar sphere of action will be 0.385 km/sec,
which is considerably lower than the oribtal velocity of the moon.

The simplest solution of the problem of return to the earth will be when
the ship reaches the boundary of the lunar sphere of action with a selenocen-
tric velocity equal in magnitude to the orbital velocity of the moon, but
pointing in the opposite direction. The take-off velocity from the surface
of the moon required for this purpose is 2,556 km/sec, and the geocentric
velocity on the boundary of the lunar sphere of action becomes zero. The
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ship will move along a radial trajectory towards the center of the earth
(Figure 65). The '"fall" of the spaceship will last for five days, and it will
reach the surface of the earth at a velocity of 11.1 km/sec.

Sphere of action
of the moon \

Vinoon = 1km/sec

V'exit = 1km/sec

Vmoon
————
V'exit

Vexit = 0

FIGURE 65_v Radial return trajectory to the earth
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of the moon

V’exit = 0.7km/sec Ve)a't x0
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Vmoon = 1km/sec

Rotation of
the earth

FIGURE 66, Elliptical return trajectory to the earth (one type)

More convenient return trajectories requiring, by the way, smaller
energy expenditures, are also possible. One of them is an elliptical
trajectory (Figure 66) with a take-off velocity from the surface of the moon
equal to 2.5 km/sec. In this case, the exit selenocentric velocity will be
0.7 km/sec, and the geocentric velocity, 0.2 km/sec. Besides the lower



energy expenditures, this trajectory is more advantageous from the
viewpoint of soft landing of the spaceship.

Other trajectories are also possible. Such geocentric trajectories can
be elliptical, parabolic, or hyperbolic orbits intersecting the surface of
the earth. But the last two require large energy expenditures, and, more
important, do not provide soft landing on the earth.

§8. Motion of Spaceships with Respect to the Earth and Stars

Let us now consider the peculiarities of the motion of spaceships with
respect to the surface of the earth and to the stationary stars. These
problems are important for the navigation of spaceships.

In order to navigate ships, determine their equatorial coordinates, find
the landing region, and solve other important problems, it is necessary
to know the laws of motion of spaceships with respect to the earth and the
stationary stars.

Considering the motion of spaceships with respect to the surface of the
earth, it is necessary to bear in mind that the unperturbed orbit of a space-
ship is a plane curve, stationary with respect to the stars, and that the
earth rotates about its axis with an angular velocity of approximately
15deg/hr.

The trajectory of a satellite of the earth with respect to the earth's
surface can be expressed by the relationship:

tan ¢=sin (w;:T + A)\)tan i

where ¢is the instantaneous latitude of the satellite; m;: is the sum of the
angular rotation velocity of the earth and the mean precession velocity of
the orbit; T is the time of flight of the satellite from the ascending node

of the orbit to the given point of the terrestrial surface: A\ is the difference
in longitudes between the position of the satellite and the ascending node of
the orbit,

It is obvious that the maximum latitude, equal to the inclination of the
orbit (¢=/), will occur when sin(wgT+AA) = 1. Thus, the trajectory of a
satellite lies on the surface of a spherical belt of the earth, bounded by the
parallels with the latitude ¢ = * i,

"Vostok' type satellites and spaceships, whose orbits had an inclination
of 65°, moved within the latitudes * 65°, and the satellites launched in 1962
and 1963 with an orbital inclination of 49° moved within the latitudes + 49°.

The orbit of a satellite is stationary with respect to the stars, and the
diurnal rotation of the earth is from west to east. Consequently, each
successive loop of the trajectory of the satellite on the surface of the earth
is displaced to the west (Figures 67 and 68). It is easily seen that this
displacement with respect to longitude, A\, can be found by multiplying the
sum of the angular rotational velocity of the earth and the precessional
velocity of the orbit by the revolution period of the ship:

AN = u); P.

One may also arrive at this conclusion by analyzing the above-given
formula which determines the trajectory of a satellite with respect to the
surface of the earth,
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The '"'trajectory' of stars is determined only by the rotation of the earth,
as a result of which each star moves along a parallel whose latitude is
equal to the declination of the star (Figure 68).

40° N. Latitude

Equator

40° S, Latitude

FIGURE 67. Trajectory of a satellite with orbit inclination of 40° with respect to the surface of
the earth

1, 2, and 3- the first, second, and third loops of the trajectory, respectively.

[N.B. — This is clearly a plot of an American launching from Cape Kennedy, although this is
not acknowledged in the Russian text.]

As an interplanetary ship gets further from the earth, its angular velocity
with respect to the earth decreases, and therefore at very great distances
from the earth the trajectory of a spaceship with respect to the surface of
the earth will be determined, like the trajectories of stars, only by the
earth's diurnal rotation. On the terrestrial surface it will coincide with the
parallel whose latitude is equal to the declination of the spaceship at the
given time (Figure 69). This coincidence, as can be seen from the
figure, is greater the farther the ship from the earth.

The position of the spaceship at a given moment with respect to the
stars is determined by its equatorial coordinates, the right ascension
a and the declination 8. The apparent motion of a ship among the stars
can be very complicated, since it is determined both by the motion of
the ship and by the motion of the earth in its orbit with respect to the
sun (Figure 70). As seen from the figure, with respect to the sun, the
spaceship has a velocity higher than that of the earth, and therefore in
equal time intervals it traverses larger distances along its orbit. An
observer on the earth projects the ship on to the celestial sphere.
First he sees the ship moving in one direction, then in the opposite
direction (retrograde motion). Such motion with respect to the stars
is, by the way, characteristic also of the planets (Figure 71). The
retrograde motion of Mars, for example, lasts for 70 days. The arc
of its retrograde motion on the celestial sphere is about 16°. Mars
makes such loops in its apparent path among the stars once in 780 days,
Jupiter, once in 399 days, and Saturn, once in 378 days.
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Apparent motion
of the ship
among the stars

Celestial sphere

Orbif of the o™,

FIGURE 70, Apparent motion among the stars of a spaceship traveling
to Venus

1, 2, 8, 4- positions of the earth and the spaceship after equal time inter-
vals; 1',2',3',4'- apparent positions of the spaceship among the stars {on
the celestial sphere).

Right ascension

+20°

+10°

Declination

00

-10°

FIGURE 71, Apparent motion of Venus (the broken curve) and
of the first Soviet automatic interplanetary station to Venus
among the stars (the figures give the positions of the station and
of Venus in 10-day intervals)
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These in general are the peculiarities in the motion of spaceships with
respect to the surface of the earth and with respect to the stars.

§9. To the Stars

Remote suns twinkle in the depths of the night sky. How many riddles
they hide! What is the mechanism of the formation of stars and star
systems? What is the source of the huge amount of energy released by the
stars? What is their composition? What are the reasons for the periodic
variation of the color of certain stars? What is the reason for the fantas-
tically high density of one of the star groups? Do stars, like the sun,
have planetary systems? These are only some of the important questions
asked about the stars. Whatever guesses, hypotheses, and assumptions
are made can for the time being be based only on study of the radiation of
stars and star systems by telescopes and radio-telescopes, and on analysis
of the variation of their positions. The difficulties of studying stars are due
to their huge distances.

Automatic stellar stations and spaceships will be the only means of
bringing distant stars nearer to a terrestrial observer. They are the only
means of obtaining the large amount of objective scientific information
required to reveal the secrets of the stars.

Even now, after the flight of the first astronauts, flight to the stars
seems a fantastic dream. But only a few years ago, flights of man-around
the earth on satellites, flightstothe moon, and flights of automatic inter-
planetary stations to Venus and Mars seemed equally fantastic.

Mankind will hardly restrict itself to study of the solar system. The
time will arrive when powerful rocket systems will launch spaceships into
orbits to the near stars. The recent astonishing successes of science and
engineering instill confidence that this time will arrive and that the very
complicated problem of flight to the stars will be solved by man's genius.

It is still impossible even to list all the difficulties which scientists and
engineers will encounter in solving the problem of a stellar flight, but it
can be confidently asserted that most of them are due to their remoteness.
The first question to be asked is whether man's lifetime is sufficient to fly
to one of the nearest stars and return to the earth? What should be the
minimum velocity of a starship which is to visit the nearest stars? Let us
consider this problem in more detail.

Table 17 gives a list of the closest bright stars, situated at a distance
of no more than 10 ps (the distances to these stars are given in parsecs and
light years).

Even a superficial look at the table leads to the conclusion that, if flight
to the stars is to be possible, the velocities of the spaceships intended for
this purpose must be tremendous, close to the velocity of light. But, as
is known, at velocities near the velocity of light, time is slowed down in
the moving reference system. The velocity of light is a constant quality,
and therefore with moving clocks the time units become longer, and the
length units become shorter in the direction of the motion. This should be
taken into account in the calculations of future astronauts.
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TABLE 17. Stars nearest to the earth and times of flight to them and back (flight duration by shipboard
clocks is 25 years)

—~ -
g% i3 g .
S 2 = 8 - g
Distance to star o § g © = = L2
- 3 o .8 =23, L E
° g = 8 & 8 x © =
Star designation 29 £8 s g 8 E &
Sn | &8 385 | =i
in par- | inlight | g -:::: “5%,5 % 5-‘% E?E
secs years A £ ‘E)'g i g ?f)%- g g o
@ 5 5 &8s A25 56 ¢
a Centauri 1,32 4,31 0,3254 26,5 1,5 17,56
a Canis Majoris (Sirius) 2,68 8,74 0,56734 30,5 5.5 23,99
¢ Eridani 3,30 10,76 0,6521 33,0 8.0 27,26
T Ceti 3,32 10,83 0,6563 33,0 8,0 217,33
a Canis Minoris (Pro-
cyon) 3,44 11,20 0,6673 33.6 8,6 28,00
a Aquilae (Altair) 4,88 15,90 0,7861 40,6 15,5 36,15
7 Cassiopeiae 5.49 17,91 0,8230 43,5 18,5 39.66
3 Pavonis 5,95 19,40 0,8406 46,2 21,2 42,50
8 Hydri 6.58 21,45 0,8640 49,7 24.17 46,35
a Piscis Austrini 6,90 22,48 0.8742 51,4 26.4 48,18
t Ursae Majoris 7.69 25,08 0,8954 56,0 31,0 53,08
= Orionis 7.81 25,417 0.8977 56,7 31,7 53,82
X Draconis 8,20 26,72 0,90566 59,0 34.0 56.22
y Leporis 8,20 26,72 0,9056 59.0 34.0 56,22
a Lyrae (Vega) 8,26 26,94 0,9072 59.4 34.4 56,64
u Herculei 8,66 27,86 0.9126 61,1 36,1 58,41
7 Bootae 8,93 29,11 0,9188 63,4 38,4 60,81
b Eridani 9,17 29,91 0,9226 64,9 39.9 62,36
B Virginis 9.90 32,28 0,9326 69,2 44,2 66,88
8 Geminum (Pollux) 10 32,60 0,93317 69,8 44.8 67,50
s Herculei 10 32,60 0.9337 69.8 44.8 67.50

{N.B. There are some minor inaccuracies in Table 17. As will be seen, the last column should equal
the third plus half the fifth.]

Thus, the flight duration to a star according to the shipboard clocks and
to terrestrial clocks will be different. The following relationship exists
between the flight time ¢ according to terrestrial clocks and the flight time
t, according to shipboard clocks:

where £ is the ratio of the flight velocity of the starships to the velocity of
light.

If the distance to the star is S light years, then the time of flight to the
star and back according to terrestrial clocks will be:
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Substituting this value for the flight time ¢ in the previous formula, and
solving it for &, we obtain

h— 28

V t§+452'

By this formula it is possible to calculate the value of the coefficient #,
for which a starship will fly to a given star and back in a time f, according
to shipboard clocks. From k, as obtained by this formula, the correspon-
ding velocity V = kc can be computed.

In the first approximation, without dwelling on a detailed analysis of this
problem, we will consider that man has at his disposal 25 years of his life
for the flight. Besides the time for the flight, time is also required for
training, for data processing after the flight, and for rest. Table 17 shows
that even flight to the nearest star, a -Centauri and back, which would take
25 years by shipboard clocks, and 26.5 years by terrestrial clocks,
requires a velocity of 0.3254c. Crew members of such a starship, upon
returning to the earth, will be one and a half years younger than men born
on the same date who never left the earth,

For more distant stars, as can be seen from the table, the required
velocity, the flight duration by the terrestrial clocks, and the difference
between them and shipboard clocks all increase.

Even by shipboard clocks a duration of 25 years for such an "experiment"
is very long. Flight to stars situated at a distance of 10 ps and subsequent
return to the earth will occupy 69.8 years for people remaining on the earth,
Is it possible to reduce the flight durations and periods that must pass before
scientific information can be obtained from the flight? This can be done,
in the first instance, by increasing the velocity of the starship. In principle
this measure is extremely effective for shortening the duration of flight
to the stars. However, it is hardly necessary to demonstrate the complexity
of the problem of obtaining velocities near that of light. It is made more
difficult by the fact that with increasing velocity the mass of the spaceship
increases, and this in turn increases the energy expenditures necessary
for further increments in velocity. This is particularly true at velocities
near that of light. In the case of a 1% -ton spaceship flying at a velocity
of 11.2km/sec, the mass increases by only one milligram, but the mass of
a proton whose velocity is increased by a factor of 27 thousand in an accel-
erator increases by a factor of more than 10 over its rest mass /9/.

The duration of a star experiment can also be shortened, if observations
are transmitted to the earth by the crew of the starship by radio immediately
after reaching the star. In this case the scientific information will be
received after a time equal to the flight time to the star by the terrestrial
clocks plus the distance from the star to the earth in light years (see Table
17). It should be borne in mind, however, first, that this method requires
the solution of the problem of communications over tremendous distances,
and second, that it is hardly possible to transmit from the ship to the earth
all the scientific information obtained by radio. In addition, as can be seen
from the table, the effectiveness of this measure is smaller, the greater the
distance to the star.

The theory of relativity therefore gives a positive answer to the question
of whether man can reach stars which are situated at distances considerably
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larger in light years than the time he has for the flight. But even without
touching on the tremendous technical difficulties connected with the attain-
ment of velocities close to that of light, many other aspects of this problem
are unclear. First of all, of course, is the problem of man's ability to
live at velocities near the velocity of light. A complete answer to this
problem can be given only by corresponding experiments with living organ=
isms. Scientists are already thinking about this.

One of the main purposes of flights to stars will no doubt be the search
for living organisms, particularly in their higher forms, in the depths of
the universe. In this connection, an estimate of the probability of detection
of higher forms of life by starships is of interest.

In the first chapter we said that according to tentative calculations of
some astronomers, for each million stars there should be on the average
one inhabited planetary system. Consequently, the probability of observing
inhabitants in the depths of the cosmos in a single flight to the stars is
according to these figures very low, p,= 108,

On the basis of this probability, even if the number n of flights is quite
large, the probability of obtaining a positive result is negligible (Table 18).

TABLE 18. Probability of one or more encounters with an inhabited planet in flights
(probability of encountering a single flight P, = 10'5)

n 2 3 4 5 10 20 5o no

P,in % 0.0004 0.0006 0.0008 0.001 0.002 0.004 0.01 0.018

Let us now calculate the number of flights which is required to guarantee
a probability Pn of one or more encounters with an inhabited planetary
system. This probability can be solved by the formula

n— 180 —Pg)
lg(1—Py)

some values of Py calculated by it are given in Table 19.

TABLE 19, Number of flights of a starship guaranteeing a probability Pg of one or more encounters
with an inhabited planetary system

P8 n Pg n PB n

0.1 53,200 0.5 350,000 0,90 1,162,800
0,2 112,700 0.6 462,000 0,95 1,152,600
0.3 180,100 0.7 608,000 0,98 1,975,600
0.4 258,000 0.8 812,800 1,00 o

Thus, if we assume that there should be one inhabited planetary system
per one million stars, the probability of encountering one such system even
in a hundred flights amounts to only 0.018%, and in order to have a 90%
probability of encountering an inhabited planetary system a tremendous
number of flights — 1,162,800! — is necessary. Many years would be
necessary for so many flights, even if starships were launched daily.

These pessimistic conclusions, however, are based on the highly
tentative assumption of scientists that there is only one inhabited planetary
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system per one million stars. It is perfectly possible that inhabited
planetary systems are more often encountered in the universe. Latest
data indicate that inferior forms of life may be encountered in the universe
quite often. In addition, scientists are already at work on the problem of
detecting inhabited planetary systems from the earth. Maybe we will even
succeed in observing, from the earth, planets inhabited by intelligent
beings. It will then be unnecessary to make such a huge number of flights
for man to meet beings similar to him, who live near other suns.
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Chapter III

BASIC PROBLEMS OF SPACE NAVIGATION AND METHODS
OF SOLUTION

§1. Basic Problems of Space Navigation

We may in general divide the basic problems of space navigation into
the following groups: selection and calculation of the ship's trajectory;
analysis of the motion along the preassigned orbit; orbit correction;
transfer to an orbit with respect to a celestial body; the flight target;
landing.

Most of these problems have been discussed in sufficient detail in the
previous chapters, and therefore we will here consider only two problems —
analysis of the motion along the preassigned orbit and correction of the
ship's trajectory.

These two problems are extremely important to the overall navigation
of spaceships. Due to the long flight duration, even to near celestial bodies,
and to the practical impossibility of accounting for all perturbations, the
deviations of the actual orbit from the calculated one may be considerable,
even for small errors in the calculated orbital parameters. For example,
take the case of flight to Venus. The flight duration, as was shown in the
previous chapter, is from 2 to 5 months. An accumulated time error of
only 10 minutes at the calculated exit point may cause a deviation in the
actual entry point into Venus' sphere of action of more than 21,000 km. This
deviation amounts to more than 3% of the radius of Venus' sphere of action.
Such an uncorrected deviation may considerably modify the motion of the
spaceship within Venus' sphere of action as compared with the calculated
motion. Even this very simple example shows the need of solving the
problem of analysis and correction of the trajectory of a spaceship.

In addition, it should be borne in mind that any phenomena or scientific
data observed by the crew of a spaceship should be 'fixed'" in space. In
other words, the crew should note not only the time of the phenomenon or
of the scientific observation, but also the observed location and the ship's
coordinates at that moment. Consequently, it becomes necessary
periodically to determine the actual coordinates of the ship.

Finally, the analysis of the ship's motion, and in particular the deter-
mination of its position, makes it possible to calculate the elements of the
actual orbit along which it moves. This is also important, since it makes
possible not only controlling entrance into the precalculated orbit, but also
calculation of the ephemeris of the ship, i.e., prediction of its further
motion,

Which elements should be determined in the analysis? First, the spatial
coordinates of the ship must be determined, but this is insufficient. In
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general, the purpose of space flight is to reach other celestial bodies
moving at high velocities in space. It is possible to carry out the flight
rigorously along the preassigned trajectory and not to fall into the sphere
of action of the destination planet. The latter may occur when the flight
regime is not followed with respect to time. Consequently, timing of the
motion along the preassigned trajectory must also be analyzed.

It is true that the error in the arrival of a spaceship at a calculated
point will be mainly determined by the timing errors of the launch or the
transfer from one orbit to another. All the remaining causes will probably
not result in large errors. However, as was already shown in the example
above, even small errors in the time of arrival at calculated points of the
trajectory may considerably modify the subsequent motion of the spaceship
and make it more difficult to reach the target.

Naturally such an important motion parameter as the velocity of the
spaceship or its components must also be controlled. This is so obvious
that it does not require any explanations. In certain cases a need may also
arise for determining in flight the accelerations of the ship and their
components,

One of the basic methods for locating the path of an airplane or ship is
based on the determination of its position lines. The position line of an
airplane is a line on the surface of the earth of possible projections of the
airplane. For an airplane situated above any of its points, the measured
parameter is constant. That is, the position line is the locus of points
corresponding to the measured value of the parameter. The airplane is
always situated over one of its points at the moment of measurement of the
given parameter.

The geometrical form of the position line is determined by the parameter
being measured. For example, the distance from an airplane to a ground
station is measured by a radio system to be 185km. We cannot determine
from this the coordinates of the airplane at the given moment, but we do know
the airplane is over one point of a circle on the surface of the earth with a
radius of 185 km and center at the ground station. In this case, the position
line is a line of equal distances, a circle.

To the measured course angle at the ground station corresponds a line
of equal azimuths, a line on the surface of the earth at all points of which
the azimuth to the station is constant. The azimuthof an airplane or ship
measured from the ground by means of a radio directionfinder corresponds
to a great circle on the surface of the earth.

Thus, in order to determine the position line of an airplane or ship it
is necessary to measure some parameters, and the location of the airplane
or ship is the intersection point of two position lines, corresponding to the
two parameters measured simultaneously. Comparison of the position
obtained this way with the precalculated one determines the deviation of the
airplane or ship from course. Comparison of the time atwhich the position
was determined with the precalculated flight schedule makes it possible to
find out how the flight plan is maintained. Finally, from the distance
between two positions of the airplane and the travel time, the actual velocity
of the airplane can be easily determined.

This method can also be used in space navigation, but in this case the
measured parameter corresponds not to a position line, but to a position
surface. For example, suppose a distance from the spaceship to the earth
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is one million km. The crew of the ship knows that the ship is situated at
one of the points of space lying one million km from the earth. All these
points form one position surface of the spaceship, a sphere whose center
is at the center of the earth, and whose radius is one million km.

What parameters may be used to determine the position surface of space-
ships? They may include the distance to a celestial body, the earth, the
moon, the sun, and so on, measured by radio-electronic methods from the
spaceship, or the distance from the earth to the ship, measured from the
earth. It is also possible to measure optically from the ship a parameter
of a celestial body such as its apparent angular diameter.

In order to determine the position surface one can also measure the
angle between the lines from the ship to the centers of two planets, the
centers of a planet and the sun, or a star and the center of a planet or the
sun. The parameter determining the position surface of the spaceship can
also be some direction from the surface of the earth to the ship, measured
by radio-electronic or optical methods. These might include the azimuth
of the spaceship and its height above the horizon, It is possible to measure
the Doppler shift of the frequency of the signals received on the earth from
the spaceship's radio, as well as the shift of the signals emitted by a radio
transmitter on the earth. A position surface of a spaceship can also be
obtained by measurement of the phase difference between signals of the
ship's radio transmitter as received by two radio stations situated some
distance apart on the earth.

It is also possible to measure some other parameters, or to use sums
or differences of some of the above-indicated parameters in order to
determine another position surface of the ship. These might include sums
or differences of the distances to two celestial bodies and sums or differ-
ences of the angular diameters of two celestial bodies.

§2. Position Surfaces of Spaceships

Let us now determine the geometrical form of the position surfaces
corresponding to the above parameters.

As is already known, the distance to a celestial body measured from a
spaceship, or the distance to the spaceship measured from the earth
corresponds to a spherical position surface (Figure 72a), whose center is
at the center of the celestial body (the earth). If the measured distance is
D, and the coordinates of the center of the planet (the earth) in the selected
rectangular coordinate system are X, Y, Z, then the equation of the sphere
will have the form:

(k=X +(@y—YP+(2—2)'=(R+ D)},

where R is the radius of the planet.

For spaceships which fly near the earth, it is expedient to choose the
origin of the coordinate system at the center of the earth. In this case when
measuring the distance to the earth, the equation of the sphere is

X4y + 2= (R+ D).

116




It can be easily shown that in the case of measuring the apparent angular
diameter of a planet or the sun, the position surface will also be a sphere
(Figure 72b), since the apparent angular diameter of the celestial body is
the same at all points equidistant from its surface. The equation of the
position in this case is

(= XP+ =Yy + @ —zp=—F

sin? —
2

where g is the angular diameter of the celestial body (the sun).

V] 9 (]

Planet Planet

a b
FIGURE 72, Spherical position surface of a spaceship determined

a- by the distance b to the planet; b- by the apparent angular diameter g of
the planet,

FIGURE 73, Cross section of position surface (cyclide) of a spaceship

=- the angle between the centers of the two planets; M, and M, - different
positions of the ship,

Let us now assume that the angle o between the centers of two planets
Pl; and Pl, is measured from the spaceship (Figure 73). In the plane of the
figure, the position line corresponding to the measured parameter a will
be circular arcs passing through the centers of the planets, since the planets
are subtended at the same angle from each of their points. In space, the
position surface is obtained by rotating the arcs of these circles with respect
to the axis P1;—Pl,. This type of surface is called cyclide. Its equation in
a bipolar coordinate system can be represented in the form:

=R} 4+ R} —2R,R,cosq,
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where ! is the distance between the centers of the planets calculated by
the formula

B=Xy— X+ (Ya— Y+ (Zs— Z,)%,

R, and R, being the distances from the ship to the respective planets
determined by the relation

R= x—XP2+@G—Yr+(z— Z)®

Let us now consider the form of the position surface formed by the angle
between the line of centers of planet and spaceship and that of planet and
star. We shall use a rectangular coordinate system whose origin is at the
center of the planet. The Z axis will coincide with the planet-star line (Figure
74). Assuming that the spaceship is at point M, a =MO0Z, is the angle
between the two lines of centers. Because the stars are so distant, light
rays from them are received in parallel beams, and therefore the angle
will be constant at all points of a circular conical surface. The vertex of
the surface is situated at the center of the planet, and its axis coincides
with the striaght line from the planet to the star. In the selected coordinate
system the equation of a conical surface can be represented in the form

—x-i__{;_yi = tan' a.

To the star x

FIGURE 74, The position FIGURE 75, Plane position surface of a spaceship
surface of the spaceship as

) a- the azimuth of a ship situated at the point M, or
a circular cone

My o
«- the angle between the
ship-planet and starship
lines (spaceship at the point
M),

Let us now determine the geometrical form of the position surface
obtained when the earth is the reference point for location of the spaceship.
Suppose a direction finder is situated at a point A on the earth (Figure 75).
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It is obvious that to the measured azimuth a of the ship corresponds a
position surface which is a plane, containing the AZ axis. The equation
of a plane in the selected coordinate system is:

tan a= -4 |

X

When the elevation of the spaceship above the horizon, or its altitude
angle is measured from the earth, the position surface will be a circular
cone whose vertex is at the point where the elevation measurement was
made, and whose axis is along the local vertical.

Next, let us consider the position surfaces which are obtained by
measuring the Doppler shift of the received signal frequency. The Doppler
effect is the variation of the frequency of a signal received when the trans-
mitter or receiver is moving. Doppler frequency shift, or Doppler
frequency, is the term applied to the difference between the frequency frec
of the signals received and the frequency fy, of the signals transmitted:

Fd:frec—itra-

Suppose the transmitter is mounted on a spaceship, and the receiver is
at the point 4 on the earth (Figure 76). The Doppler shift of the received
signal in this case is given by the relation:

Fi= —’% Veosp,
where ¢ is the propagation velocity of the radio waves, and V is the velocity
of the ship.

For constant f,, and V, as can be seen from the formula, the frequency
shift depends only on the angle B between the velocity vector and the
direction to the receiver. Consequently,
at all points of space with the same
value of the angle f, the Doppler
frequency shift will be the same., But
points with equal values of the angle B
form coaxial circular conical surfaces
whose common vertex is at the trans-
mitter and whose axis is along the
velocity vector V. Consequently, measure-
ment of the Doppler frequency shift gives
the position surface of the spaceship in
the form of coaxial circular cones with
a common vertex (Figure 77).

Notice an important feature of these
position surfaces. The opening of the
FIGURE 76. Radial component of the vel- cone is determined by the angle . On
ocity of a spaceship measured by the Dop- the straight line coinciding with the
pler shift velocity vector (f = 0°) the Doppler

frequency shift is maximum. The conical
position surface degenerates here to a straight line. For g= 90°, F, = 0.
Consequently, zero Doppler shift corresponds to a plane position surface
which is perpendicular to the velocity vector of the ship.
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Thus, a family of conical position surfaces is obtained which move
together with the ship in space, The larger the frequency shift, the smaller
the opening of the cone. In extreme cases the conical surfaces degenerate
into a straight line and a plane.

As can be seen from the formula, the vertex angle § of the cone is
determined by two parameters: the measured value F4 of the Doppler
frequency shift and the ship's velocity V. But V depends on the position
of the ship in space, which is still unknown. Consequently, position
surfaces which are circular conical surfaces cannot be used to determine
the position of a spaceship when the velocity is unknown. For this purpose
we can use only a plane, which corresponds to the unique case Fz = 0.

FIGURE 77, Position surfaces which are obtained when measuring the Doppler
frequency shift

Another feature of these position surfaces should be remembered. All
our previous considerations were based on the fact that the receiver is
stationary in inertial space. However, in reality this is not so. A receiver
which is situated on the earth has some linear velocity due to the diurnal
rotation of the earth, As was shown in the first chapter, this velocity (in
km/hr) is equal to 0.465 cos 9. This velocity is directed along the parallel
to the east.

The Doppler frequency shift is due to the relative velocity of the trans-
mitter (with respect to the receiver). It is obvious that it will not be equal
to the absolute velocity of the spaceship, on which the transmitter is
mounted. The relative velocity is the difference between the velocity vector
of the ship and the linear velocity vector of the point on the earth where the
receiver is situated.

Thus, for a given location of the receiver, the position surfaces will be
symmetric with respect to an axis coinciding with the vector of the relative
velocity of the spaceship. In other words, the direction of the vector of the
relative velocity will be the axis of conical position surfaces, and the
extreme position surface, a plane, will be perpendicular to this vector.
For other locations of the receiver, the orientation of the position surface,
or plane, in space will differ corresponding to different orientations of the
relative velocity vector.
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When measuring the Doppler frequency shift of the signal received on
the spaceship, the vertices of the conical position surfaces will coincide
with the location of the radio station on the earth. In this case too, if the
velocity of the spaceship is unknown one may use only the plane to determine
the position.

FIGURE 78, Position surfaces of a spaceship as an el-
lipsoid and a hyperboloid of revolution

D and D,- distances from the centers of the planets to
the ship at the point M,

The velocities of spaceships are sufficiently high for the Doppler
frequency shift to reach several Mcps.

Determining position surfaces by measuring the phase difference of the
signals from a spaceship's transmitter as received by two ground stations
leads to hyperbolic position surfaces (hyperboloids of revolution). Their
axes coincide with the straight line connecting the ground stations. At the
mean distance between the receiving stations the hyperboloid degenerates
into a plane perpendicular to the base line.

If the measured parameter is, for example, the sum of the distances to
two celestial bodies, the position surface of the spaceship will be an ellip-
soid of revolution with an axis passing through the centers of the celestial
bodies P1l; and Pl,. The difference between the distances to two celestial
bodies corresponds to a hyperboloid of two sheets whose rotation axis passes
through the centers of the celestial bodies (Figure 78).

§3. Principles for Solution of the Problems of Analysis
and Correction of the Spaceship's Trajectory

The solution of the problem of controlling the motion of a spaceship
requires determination of its position at a given time, as well as the
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determination of its actual orbital elements. The actual orbit of a space-
ship can be determined either by two successive positions in space, or
from three directions from the earth to the ship, obtained at different times.

The directions to a spaceship, usually given in some spherical coordin=-
ate system, are obtained by the intersection of two position surfaces (two
planes, two conical surfaces, a plane and a conical surface).

For interplanetary ships far from the earth, determination of the actual
orbit is possible only by determining successive positions of the ship.

Let us consider the principle of the determination of the position of a
ship in space.

In general, the analytic relation between the measured parameter a,
the coordinates X, Y, Z of the center of the celestial body or a point of the
earth at which the measurement of the parameter « is made, and the P
coordinates x, y, z of the spaceship can be represented:

a=f(X, Y, Z, x, y, 2).

This equation contains three unknown coordinates; consequently, to
determine them it is necessary to measure any three parameters, or one
parameter from three different points on the earth. The resulting three
simultaneous equations will contain three unknowns, the coordinates of the
spaceship at the given moment. The geometrical interpretation of the
solution consists in finding the intersection points of three position surfaces of
the spaceship.

FIGURE 79, Determination of the position of a spaceship at the
point M from its height 4 (elevation angle), azimuth a, and dis-
tance D

Let us assume that at some point Aon the earth (Figure 79) there is a
station which measures three parameters, the height above the horizon, or
the elevation angle, the azimuth of the spaceship, and its distance.
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Knowledge of these parameters makes it possible to determine the unique
position of the spaceship at the given moment. The height, or elevation
angle /, gives a conical surface whose vertex is at the ground station, and
whose axis is along the local vertical. The distance D results in a sphere
whose center is at the ground station. The intersection of these two
position surfaces gives a position line of the ship. In this case it is a circle
lying at some height above the earth in a plane perpendicular to the local
vertical. The intersection of this line with the third position surface, a
plane, determined by the measured azimuth a, gives the point M at which
the spaceship is situated at the given moment.

In this example, all three position surfaces intersect at one point, and
the position of the spaceship is determined uniquely. In general, the
position surfaces intersect at two, and in some cases, at four points,

s

FIGURE 80, Four possible intersection points (M,, M, M,, and M,) of three
position surfaces ( one cyclide and two spheres, obtained from the distances Dy and
D; to the planets)

a- "side" view; b- view from "above",

Suppose that in order to determine the location of a spaceship three
parameters are measured, the angle between the centers of two planets
and the distances to two other planets (Figure 80). The intersection of the
cyclide with one of the spherical surfaces gives two position lines, and two
circles are obtained. Their intersection with the second sphere gives
four points: M, My, M3, and M, It is obvious that only one of these points is
the actual position of the ship in space at the given moment, and the
remaining three points are false. Which one is real can be solved in two
ways. First of all, it is most likely that the real one is the point which is
nearest to the calculated orbit. Sometimes this method cannot answer the
question. In fact, the points M; and M; may lie close to one another, and
the calculated orbit may pass between them. In this case it is worthwhile
to measure a fourth parameter, resulting in another position surface which
must intersect the first three at the actual location of the spaceship.
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The previous considerations were based on the assumption that the
parameter determining the position surface is measured with absolute .
accuracy. However, in reality, any parameter is measured with some
error. Let us now consider the possible measurement errors of some
of the principal parameters and their influence on the solution of problems
of cosmic navigation,

Several methods of determining position surfaces depend on finding the
direction to a star. Equipment for doing this automatically is already
available. There are for example, airplane navigational instruments,
astrotrackers, which work by finding star positions, The reasons for
errors in direction finding of stars are the aberration of light,* proper
motion of the stars, and instrument errors.

Aberrational displacement of the direction of a star is due to the velocity
of the spaceship. For velocities of 10 to 20 km/sec it is small, for veloci-
ties of about 100 km/sec it may reach approximately 1'. If direction finding
of the star is carried out, for example, in order to measure the angle
between the star and the center of some planet, the aberrational displace-
ment produces an error in this measurement. As a result of this, the
vertex angle of the position surface cone will differ from the correct value.
Aberrational errors also appear in finding the direction to planets and other
celestial bodies.

When measuring the angle between a star and the center of a planet, the
proper motion of stars, its motion with respect to other stars, gives rise
to a displacement of the axis of the conical position surface. The problem
is that the ship's computer has in storage stellar coordinates corresponding
to some particular time, which will not coincide with the moment of direction
measurement. The larger the difference in the times and the higher the
proper velocity of the star, the larger the difference will be between the
actual star coordinates and those used in the astrotracker. Consequently,
the axial displacement of the conical position surface from its true position
will also be larger.

It is true that the proper motions of the stars are small. For example,
the annual motion of Sirius is 6.6 urad**; Arcturus, 11.4; Procyon, 1.6;
Altair, 3.3; Pollux, 3.1; Fomalhaut, 1.8; Regulus, 1.22. Other stars
have, as a rule, a lower proper velocity, but even these low velocities may
lead to quite large errors in the determination of the position surface. For
example, a spaceship is 10 millionkm from the earth, and to determine a
position surface, the angle is measured between the center of the earth and
the star Arcturus. Assume the ship's computer has in it stellar coordinates
which were calculated for a time which differs from the measurement date
by half a year. The error in the linear displacement S of the conical
position surface will be:

= AaD,

where Aq is the variation of the position of the star during half a year in
radians, and D is the distance to the earth in km.

* Abberation of light is the astronomical term for the deviation of the apparent position of a star on the
celestial sphere from its actual position, This deviation is due to the finite propagation velocity of light
and to the motion of the observer, For more details on this, see, for example /7/,

** A microradian is equal to 1076 radians, (One radian is 57°17' 44,8"))
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Substituting the values of Ae and D, we obtain

1.4 10,000,000
2 1,000,000

S= =57 km.

This error by '"cosmic scales" is of course, small, but the distance of
the spaceship from the earth in the example was relatively small. For a
distance of 100 million km from the earth, the error will be 570 km, and if,
in addition, the stellar coordinates are wrong by 1 year, the error increases
to 1140 km. Such an error apparently will be noticeable.

Both this and the previous error, caused by aberrational displacement,
are systematic, and therefore can theoretically be compensated for with
sufficient equipment.

An error in the determination of the position surface may also arise in
finding the direction of binary stars due to the unequal brightness of the two
stars. In this case, in measuring the angle between a planet and a star,
there may be errors in both the position of the cone's axis in space and the
vertex angle of the conical surface.

In a number of cases, the distance between the components of binary
stars are quite large. Thus, for example, the components of the binary
star in Ursa Major are situated about 12' apart.

Binary stars are not so numerous. Statistics show that of stars up to
the 9th stellar magnitude, about 5.5% are binary, but for the brighter stars
the percentage of binaries increases. At the present time, very detailed
catalogues exist. The simplest method for combatting this error is to
choose ordinary, nonbinary stars for generating position surfaces.

Another possible reason for errors in the determination of the spaceship's
position surface is the parallactic star displacement. [Parallax is the
apparent displacement of an object as seen from different points.] If, for
example, the angular coordinates of stars on the celestial sphere are
calculated under the assumption that the observer is at the center of the sun,
another observer far from the sun will not see the stars at "their usual
places, ' but they will appear slightly shifted. Parallactic displacement
results in a change in the orientation of the cone's axis and in the angle of
the cone when the angle between a star and the center of a planet are
measured.

Measurement errors in determining the angle between the centers of
planets may result from noncoincidence of the center of brightness with the
geometrical center of the planet, inaccurate knowledge of the distance
between the planets and the finite propagation velocity of light, as well as
errors in the instruments used.

The displacement of the brightness center depends on many factors, but
mainly on the phase of the planet. This may cause an error in the deter-
mination of the direction of the planet's center of several minutes of arc
and even tens of minutes in the case of short distances to the planet.

The absolute distances between celestial bodies are known to within
0.01%. If the distance between the planets is 20 million km, the possible
error in the determination of the distance between them is 2000 km. This
creates an error in the determination of the position surface.

Because of the finite propagation velocity of light, in the time it takes
light to reach the spaceship from the planet, the planet moves along its
orbit and its coordinates vary considerably. For example it takes a light
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ray 480 seconds to travel 143 million km from Mars. In this time, Mars
moves along its orbit more than 11,000km.

In order to eliminate this error, it is necessary to give the computer
the coordinates of the planet corresponding to the time of the observation.
It must also be given the time it takes a light ray to traverse the distance
from the planet to the ship. However, it is not so simple to carry this out
in practice. The distance to the planet is unknown, since the exact position
of the ship at this moment is unknown. As a matter of fact, the measure-
ment is being made just to determine this position. In the first approxima-
tion, apparently, it is necessary to use the position of the ship given by the
previously calculated orbit of its motion.

Measurement of the angular diameter of a celestial body is possible in
several ways. For example, it is possible to use a movable circular
screen (Figure 81) whose plane is perpendicular to the direction of the
center of the celestial body.

FIGURE 81, Measurement of the angular diameter B of a planet
by means of a movable circular screen of radius r

A screen of diameter 2r moves perpendicularly to the axis 00, to a
position where the edges of the celestial body are barely visible. The
measurement process can be easily automated by means of photocells and
a servomechanism which controls the distance d and the direction of the
plane of the screen,

As can be seen from the figure, the angular diameter of the celestial
body is:

B = 2 arctan dL.

Measurement of the apparent angular diameter of the celestial body is
also possible by tracking the edge of its disk (Figure 82) by means of one
or several telescopes.

As was shown above, measurement of the apparent angular diameter of
the celestial body makes it possible to determine a spherical position sur-
face of the spaceship. The error of the determination of the position sur-
face by this method depends on the measurement error of the apparent
angular diameter g and on the accuracy of the known diameter.

The diameters of the planets are known to within 0.01%. Errors in these
measurements are due to the influence of the planets!' atmospheres, their
nonsphericity, nonuniform illumination of their surfaces, as well as
instrument errors in the measurement system,
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Measurement of distances to celestial bodies is possible by radiation
and radar methods. The radiation method is based on the relationship
between the amount of radiant energy falling on a heat-sensitive element
and the distance to the energy source.

According to calculations of V. P, Seleznev /29/, the relative error of
measurement of the distance to the sun by this method is 0.01 to 0.1%. The
absolute error of the distance measurement is approximately equal to the
diameter of the earth in flights near Venus, Mars, or Jupiter and reaches
5 million km at a distance from the sun corresponding to the apogee of
Pluto (7 billion km).

FIGURE 82, Measurement of the angular diameter g of a celestial
body by following the edge of its disk by means of the telescopes
Ty and Ty

A variation of the intensity of the radiation flux of a heavenly body may
lead to large errors in the measurement of its distance. This is a funda-
mental disadvantage of this method.

The radar method of distance measurement consists of sending a radio
signal to the celestial body and measuring the time interval between the
sending of the signal and the arrival of the reflected signal. This method
is widely used now in aviation. Radio-altimeters, mounted on all modern
airplanes, are used for measuring the distance to the surface of the earth
by radar.

An important disadvantage of this method is the need for a large source
of electric energy on the ship, since a very powerful signal has to be sent
to remote celestial bodies. It can therefore be assumed that radar will be
used only in the neighborhood of celestial bodies. :

The errors in the measurement of the parameters and in the calculation
of the coordinates of celestial bodies cause the errors in the determination
of the position surfaces of a spaceship.

The error in the determination of the ship's position depends on the
errors of the determination of the position surfaces and on the angle of their
intersection. The closer this angle is to a right angle, the smaller the
error. Consequently, it is necessary to choose methods which make it
possible to determine the position surface with a higher accuracy, and, in
addition, methods and celestial bodies which provide the most favorable
intersection angles of the position surfaces.

Suppose at a given moment the ship is situated at the point M (Figure 83).
In order to determine its position, its azimuth «q height (elevation angle) 4,
and distance D are measured from the point K. All these parameters are
measured with some errors: omeas=a+ Aq; Ameas= R + A, Dmeas = D + AD
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(where a, hand D are the actual parameters of the spaceship, at the given
moment, andAg, Ak, and ADare the respective measurement errors).

4

FIGURE 83, Error of the position determination of a spaceship from the azimuth a,
height (elevationangle) 4, and distanceD, all measured from the point M

In this case the calculated position of the ship is at the point M’. The
error Al of the determination of its position is equal to the distance between

the points M and M”: — P
Al= )/ (aD)} 4 (Dahy + (Dba)t =

=D/ (5] 4 @ahy+ (aar

As can be seen from the formula, the error in determining the position
of a spaceship depends both on the measurement errors and on the distance
to the ship; the larger the distance, the larger the error. For this reason,
the angle-distance method cannot be used successfully to determine the
position of an interplanetary ship at a large distance from the earth.

Even at comparatively small distances to the spaceship (1 millionkm) and
small(l') angular measurement errors of a and /4, the error in determining the
position of a spaceship due to only these two primary errors will be about 420 km.

Consequently, during the main phases of the trajectory '"on board''navigation
methods, methods in which the ship's position is determined from measure-
ments of some parameters directly from the spaceship, will be used.

In the above example, all the three position surfaces, plane, cone, and
sphere, intersect at right angles, and the error of the position determination
of the ship is minimal. However, the position surfaces may not intersect
at right angles as shown in Figure 83. Then, even if the measurement
accuracy of the parameters determining the position surfaces is high, a
large error is possible in the determination of the ship's position. In suchcases
other parameters should be used to provide more favorable intersection angles
of the position surfaces. One of the important problems of space navigation
is choosing those methods of locating the orbit of the spaceship which, on a
given section of the trajectory, provide the highestaccuracy.

Two successive positions of a spaceship make it possible to determine
its velocity vector. Suppose a ship is successively situated at the point M,
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at time 7, and at the point M, at time T, (Figure 84). The absolute value of

the velocity vector is then
s___V a+i+4

T =T, T =T,
and its direction is tany—=4;
Xy '
2} 23
cosPp= -2 =
P S

VAa+td+4

In this way, the mean value of the velocity on a rectilinear section of the orbit
is determined. The method is therefore suitable only when the spaceship is
far from a gravitational center, which corresponds to a low-curvature orbit
with a nearly constant velocity. Note that for the same errors in determining
the ship's position, the errors in the calculation of the velocity vector
decrease with longer time intervals between the position measurements.

2

¥,

FIGURE 84, Determination of a spaceship's mean velocity vector V
X from two successive positions M, and M,

FIGURE 85, Possible solutions of the problem of correcting
a spaceship’s trajectory to arrive at the correct orbit, start-
ing from the point M of the actual trajectory
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Letus try to estimate the accuracy that the distance S between the two posi-
tions should be so that the calculated velocity would have a given accuracy.

Suppose it is necessary to determine the velocity of a spaceship with a
relative error not larger than 1%. Let the distance between the successive
positions of the ship be 10,000 km. We want to find the required measure-
ment accuracy of the distance AS. Since AV/V = AS/S, we have AS = S(AV/V) =
=10,000.0.01 = 100 km.

Consequently, the error in the velocity determination will be not larger
than 1% if the distance is measured with an error up to 100 km,

A velocity determination accuracy of 1% is not high compared with the
required accuracy of the position determination of the interplanetary ship.
To measure a distance of 10,000 km with an error not larger than 100 km
is quite a difficult problem, and therefore this method of determination
the velocity of a spaceship is not highly accurate., We shall give below other
possible methods for more accurate measurement of the velocity of a spaceship.

The known positions of a spaceship, its coordinates at certain moments,
make it possible to calculate the elements of its orbit. For example, the
current rectangular position coordinates of a spaceship are functions of
the six elements of its orbit (i, Q, w, a, ¢, T) and of the time ¢

x=f(t i Q v, a, e T)
y=falt, i, Q o, a, e, T);
z2=fg(t, i, & », a, e, T).

It is obvious that the stated problem, calculation of the oribtal elements
of a spaceship, can be solved if the coordinates of the ship are determined
by some method for two times: x,, y,, 2, for time {,, and x,, y;, 2; for time f,.
Having a system of six equations with the known quantities x,, y,, 2|, 1|, %2,

Y2, 23, 12 and the six unknown orbital elements it is possible to determine
the orbital elements.

The velocity components of a spaceship along the axes of a chosen
coordinate system are also functions of its coordinates, the elements of

the orbit, and the time. Therefore, by determining the coordinates of a

spaceship at some moment and its velocity components (V,: :—:, V,= -Z“:L, and

V,:%),it is possible to calculate all the elements of its orbit, Other

methods for determining the orbital elements of a spaceship are also possible,
An important problem in interplanetary navigation is the correction of
the actual orbit if the deviation from the preassigned orbit exceeds the
permissible value in the given conditions. For this purpose we will use
the coordinates of the spaceship obtained by solving the position problem.
In principle the following methods of correction of the actual orbit are
possible. Suppose at point M (Figure 85) the crew of a spaceship detected
a deviation from the prescribed trajectory. If the actual orbit will
later intersect the desired one, it may be decided to follow the former
orbit without any maneuvers until meeting the calculated orbit at
the point 4’. They may also decide to carry out maneuvers in order to
arrive at one of the points of the calculated orbit on the section 44’. for
example A’. It is also possible to go to the nearest point of the planned
trajectory (the point 4) where transition to another orbit was envisaged.
Finally, it is possible to go directly to the calculated orbit (the point A7),
The choice of the method of arriving at the correct trajectory depends
onthe particular conditions and the magnitude of the deviation. But regardless
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of the method, any transfer orbit will be either elliptical, parabolic, or hyper-
bolic withrespect to the given celestialbody. From the viewpoint of minimum
fuel expenditure, it is expedient to transfer to the desired orbit along elliptical
paths,

A point to be remembered in solving the problem of orbit correction is
that at the point where the ship reaches the desired trajectory (points
A, A", A, A”), an appropriate maneuver must be carried out in order to
continue the motion along the correct orbit.

Finally, we point to another important aspect. The importance of timing
in space flight and the necessity of keeping to the flight plan along the
predetermined trajectory have already been mentioned. Consequently, it
is necessary not only to transfer to the correct trajectory, but alsotoreach it
at the scheduled time. Consequently, in moving along transfer orbits to
the desired trajectory, the spaceship should follow a rigorously determined
schedule.

Between two points of space in the gravitational field of a celestial body
there exist, in general, an infinite number of elliptical orbits. However,
for a given velocity only one of them can be traversed in a given time.
Thus, the complete solution of the correction problem consists in finding
an orbit between the position of the spaceship at a given moment and the
chosen point of transfer to the correct trajectory along which the ship will
reach the planned point on the correct orbit at the correct time.

These are the basic principles of the solution of some problems of space
navigation, analysis and correction of motion trajectories.

§4. Navigation Systems and Spaceship Equipment

Let us now consider some of the most representative present and
possible future systems and equipment for determining the position of
spaceships.

For determining the position of artificial earth satellites, the Americans
use a phase-measuring system called ""Minitrack." Its operation is based
on measuring the phase difference of high-frequency signals from the
satellite's transmitter and received by antennas situated some distance
apart.

The equipment consists of the satellite's transmitter, a set of ground
receiving stations, anda '"Vanguard' computational center with an IBM-'704
computer, interconnected by a communication system.

Let us consider briefly the principles of its operation. At the points A4,
and A, (Figure 86) the antennas are mounted. The distance between them
corresponds to n wavelengths emitted by the satellite transmitter, or a
360°n phase angle. The distance to the satellite is considerably larger
than the distance between the antennas, and therefore it can be assumed that
the distances from the satellite to the points A, and P are equal. At these
points the phases of the signal emitted by the satellite transmitter are
identical, while A, and A4, differ. The segment P4,is the difference between
the distances traversed by the signal from the satellite to the antennas.
Suppose it contains m wavelengths, or a 360°m phase angle of the signal.
Then the direction of the satellite, determined by the angle a, can be found
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from the relation

cosa= —2 =T
AlAg n
I
I
*
A, An(360n ) A,
}

X cosa -e——Device for comparing signal phases ]

FIGURE 86, Operational principle of the radio-electronic system based
on the measurement of the phase difference of signals from a spacecraft

2= the direction of the satellite,

Thus, by measuring the phase difference of the signal from the satellite
at the points A, and A, the direction u of the satellite can easily be deter-
mined. However, for each measured phase difference m, there also
corresponds aseries of other possible positions of the satellite. Rigorously
speaking, as we already mentioned, the measured phase difference gives
the position surface of the spacecraft in the form of a hyperboloid of revolu-
tion of two sheets, whose axis coincides with its base line. The position
surface is the same in this case. The assumption that the distance to the
satellite is considerably larger than the length of the base line makes it
possible to replace this complicated position surface by a simpler one, a
two-sheeted circular cone with an axis coinciding with the base line. The
generators of the cone coincide with the asymptotes of the hyperboloid, and
the opening of the cone is equal to 2a.

One position surface does not make it possible to determine either the
coordinates of the object, or even its direction. The '"Minitrack'' system
uses a second set of antennas to determine the direction of the satellite.
The base line of the first antenna system lies on a north-south line, and
the base line of the second system on an east-west line (Figure 87).

Structurally, the antenna system® are multielement grids whose recep-
tion patterns cover anazimuth angle of up to 90° and a height (elevation
angle) of up to 12°. Altogether the receiving station has eight grid antennas.
Four of them, with base linesof 150m, are arranged cross-wise in the
north-south and east-west directions. The other four form three pairs, two
of which serve to eliminate the ambiguity in the north-west direction, while
the third eliminates the ambiguity in the east-west direction.
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The radio signal has a phase repetition every 360°, and an ambiguity in
the angle o therefore results if the difference in the distances from the
satellite to the points A, and A, exceeds one wavelength. This uncertainty
is eliminated by an additional arrangement of antennas on each base line,
so that the shortest distance between two antennas does not give a phase
difference larger than 360°.

£

FIGURE 87, Positions of antennas A;, 4., As and A, of the "Minitrack”
system; aand B are angles determining the direction of the satellite

Thus, the ambiguity in the measurement of the phase difference is
resolved and the system measures two parameters, the angles o and B
with respect to the base lines. To each parameter corresponds a position
surface in the form of a two-sheeted circular cone with an opening of 2a
and 28. The axes of the conical position surfaces coincide with the base
lines, and therefore also intersect at an angle of 90°.

As a result of the intersection of the four cones, eight possible satellite
directions are obtained. Which of these is the true direction to the satellite ?
It is obvious that four directions are at once excluded, since they lie below
the horizon. The reception pattern of the antenna systems, a rough esti-
mate of the position of the satellite, observation of its motion during some
time, and a number of other factors, make it possible to exclude the
remaining false directions and accurately determine the direction to the
satellite,

The "Minitrack" system permits a determination not of the position of
the satellite, nor of its spatial coordinates, but only of its direction at a
given moment. It is clear that the position of the satellite canbe determined
by means of two such systems, simultaneously observing the satellite from
different points on earth.

The satellite's velocity components, which are determined from the
dependence of its angular positiononthe time, aid in calculating the elements
of the orbit. The components are obtained by tracking the satellite during
some period,
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To track satellites with orbit inclinations of 30 to 40°, a network of nine
"Minitrack' stations was created. These are located approximately in the
meridional direction in the USA and South America. The stations are
connected to the computational center by a communication system. The
precalculated positions, the satellite ephemeris, obtained as a result of
the processing of the observations by a computer, are transmitted to various
observation points.

A new system, based on the '"Minitrack' has been developed. The
""Azusa' system directly determines a spacecraft's position in space. It
includes a range finder based on the principle: inquiry (from the earth)—
answer (from the spacecraft). This third parameter, the range, gives a
position surface in the form of a sphere. The intersection point of the
direction, determined by the angles a and g, with the sphere gives the
position of the spacecraft.

The range of the spacecraft is determined by superimposing on the signal
of the range finder's transmitter a series of modulating frequencies, which
are produced by the vehicle's transponder. The phase of the signal received
on the earth is compared with the phase of the transmitted signal, and
determines the range. Several modulating frequencies are used in order to
raise the accuracy of the range measurement. The lowest frequency is used
to determine distances in a wide range, and the higher frequencies provide
data within this interval.

Initially it was intended to use the '"Azusa'' system for guidingthe "Atlas"
ICBM. It is reported in the foreign press that with small modifications,
the equipment of the system will make it possible to determine the position
of rockets intended for lunar flight.

For tracking ballistic rockets and satellites one American firm proposed
a "Sortey' electro-optical system (Figure 88). A photomultiplier tube is
placed in the focal plane of the lens of a camera with a narrow slit in front
of it. By means of a rotating mirror (3), the image of a section of the sky
is scanned, alternately in the planes X0Z and YOZ. By means of a
synchronizing device, coupled to the rotating mirror and the output of the
photomultiplier, the increment of the angular displacement of the rotating
mirror is determined in order to obtain the exact angular distance between
two light sources, the spacecraft and some star. The exactangular position
of the star, its azimuth and elevation, is determined by means of an IBM-
7090 computer. Apparently such a system must,provide a tracking accuracy
of the order of 1" for an angular rotation velocity of the mirror of 20 rpm.

The "Sortey' system, as considered by foreign specialists, permits the
accurate determination of the azimuth and elevation angles of a spacecraft.
The direction to the vehicle is the line of intersection of two position sur-
faces, a plane, corresponding to the azimuth, and a circular cone, corres-
ponding to the vehicle's elevation angle. The use of two systems, situated
at different points on the terrestrial surface, makes it possible, by simul-
taneous measurement, to determine correctly the position of a vehicle in
space.

As an example of a navigational system on board a spaceship, we consider
the block-diagram of an astrotracker. This is an automatic device for
determining the position of an interplanetary ship by means of three
celestial bodies, the sun and two planets. The instrument solves the
problem in a heliocentric coordinate system . *

* The tracker diagram is taken from /29/,




FIGURE 88, Diagram of an electron-optical system for
tracking spacecraft

1. case of the main optical system; 2- stationary mirror
for scanning along the x axis; 3= rotating mirror;
4= stationary mirror for scanning along the v axis.

Indicator

X, X, X,
Y

4 M
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v

FIGURE 89, Block-diagram of an astrotracker for a spaceship, based on the
measurement of some parameters of three celestial bodies

B, and B,- computers; G- stable-frequency oscillator,
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The astrotracker contains photoelectric tracking systems, T, T,,and T;
(Figure 89), which measure either the angular diameters of the celestial
bodies or the intensity of their radiation. The corresponding signals from
the photoelectric tracking systems proceed to computer B, for determining
the coordinates of the spaceship at a given time. The same computer is
fed with the time-varying coordinates of the centers of the celestial bodies.
Computer B, calculates the current coordinates of the centers of the
celestial bodies: the time is measured by the stable-frequency oscillator
G. The current heliocentric coordinates of the ship are obtained as a result
of the solution of the problem. They can be displayed by the indicator and
introduced into the flight control system in order to compare the actual with
the calculated orbits, and help correct the flight trajectory.

The three parameters measured by the astrotracker, the angular
diameters of the celestial bodies or their radiation intensities, result in
three spherical position surfaces., These generally intersect at two points.
Consequently, the solution of the problem by the astrotracker will give the
coordinates of two points, one of them, the position of the spaceship at the
given moment. Due to the large distances between the points, the incor-
rect one is easily eliminated by comparison with the calculated trajectory.

On the "Vostok'' earth satellite, a navigational globe was used. With it,
the pilot could at any time determine his position with respect to the surface
of the earth. The globe was mounted in the pilot's cabin in the central part
of the instrument panel (Figure 90).

FIGURE 90, Internal view of the cabin of the pilot of a "Vostok" earth satellite

1- pilot's panel; 2- instrument panel with the navigational globe; 3- television
camera; 4- window with an optical driftmeter; 5- orientation control handle of
the ship; 6- radio reciever; 7- food container,

The design of such an instrument for satellite navigation can be based
on simulation of the satellite's motion with respect to the earth, including
the daily rotation about its axis. Let us examine a possible scheme for the
solution of this problem (Figure 91),
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A geographical globe G is rotated by means of motors M, and M, with
respect to two axes, the axis of the earth's daily rotation #S and an axis
CC, perpendicular to the orbital plane of the satellite. With respect to the
NS axis the globe rotates from west to east with an angular velocity equal
to one revolution per stellar day (23 hrs 56 min 04 sec of mean solar time).
The motion of the satellite along the orbit with respect to the surface of
the earth is shown by an arrow. To replace this motion by a rotation of
the globe with respect to the CC axis, the rotation should take place in a
direction opposite to the orbital motion of the satellite. The angular
velocity of this rotation should apparently be given by the relation:

360°

Wce == P ,

where P is the period of revolution of a satellite around the earth.

Wys=Ww
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FIGURE 91, Possible kinematic diagram of a navigational globe for
determining the position of a satellite with respect to the surface of
the earth

G- globe My and M, ~ motors; NS- axis of the earth's rotation;
cC- axis perpendicular to the orbital plane of the ship; ea’ - arcs
for setting the orbit inclination,

The rotation axis CC of the globe is perpendicular to the orbital plane
of the satellite, and therefore, as can be seen from the figure, the angle
between the NS and CC axes should be equal to the inclination i of the orbit.

We now place infront of the globe a glass scale with a reticule in the form
of crossed lines over the center of the globe. Thus, the cross will indicate
the position of the satellite with respect to the surface of the earth at any
time.

Before use, the globe should be placed in its initial position, the cross
should be placed over the entrance point of the satellite into the orbit, and

137



the device should be switched on at the moment it passes this point. When
the satellite is launched into an orbit with another inclination, it is
necessary to change the length of the arc aa’accordingly.

A constant angular rotation velocity of the globe about the CC axis
corresponds, rigorously speaking, only to a circular orbit of a satellite.
When moving an elliptical orbit, the angular velocity of the satellite with
respect to the center of the earth is not constant, hence, errors appear in
the determination of the position of the spaceship. These errors are
periodic, and their maximum value is proportional to the eccentricity of
the orbit. Orbits of manned earth satellites lie in a comparatively narrow
range of heights, between 140 to 160 km and 300 to 500 km, and therefore
the eccentricities of their orbits are small.* The resulting errors in the
ship's position calculated by this instrument due to the constant rotational
velocity of the globe with respect to the CC axis will be small.

In principle it is possible to allow for this error. For this, the angular
rotational velocity of motor M, should, at each moment, equal the angular
rotational velocity of the satellite with respect to the center of the earth.
This problem can be solved by means of a programmed device which
controls the operation of motor M,.

A second possible error in determining the position of a satellite is
nonallowance for the precession of its orbit; but this error too can, in
principle, be compensated for. We previously said that the orbit precession
is manifested in a slow rotation of the plane of the orbit with respect to the
axis of the earth in a direction opposite to its daily rotation. Consequently,
to take into account the orbit precession, the globe should rotate with
respect to the NS axis with a velocity equal to the sum of the angular rota-
tional velocity of the earth and the mean precessional angular velocity.
Allowance for the precession is particularly necessary for multi-revolution
satellites, since the error in the determination of the ship due to non-
allowance for the precession accumulates during revolution.

The globe is a completely independent instrument, its operation does
not depend on any devices on the ground or aboard ship. Therefore, it can
also be used in ground command points for finding the position of the
satellite with respect to the surface of the earth at any moment. The
instrument can also be used in flight preparation to study the ship's trajec-
tory with respect to the earth, to choose the orbital inclination and entrance
point into the orbit in accordance with the purposes of the flight and, finally,
to plot the ship's trajectory on a map. For these purposes, however, it
is more expedient not to adhere to the real time scale and rotate the globe
with respect to both axes with a higher angular velocity.

We note in conclusion the possibility of correcting the readings of the
navigational globe from data of other, more accurate systems of determin-
ing the position of the satellite. The correction should be carried out by
rotating the globe so that the point under the cross will be that point of the
terrestrial surface which corresponds to the ship's position according to
the data of the more accurate systems.

* The perigee height of the orbit of "Vostok 1" was 181km, the apogee heightswas 327 km, which corresponds
to an orbit eccentricity of approximately 0,01,
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§5. Inertial and Astroinertial Navigation Systems for
Spaceships

An on-board inertial navigation system can be used to determine the
position of a ship in space and, what is particularly important, its velocity.
In general lines, the operation of inertial systems is based on measuring
the accelerations which the spaceship experiences and subsequently,
integrating them with respect to time. As is known, the first integration
of the measured acceleration gives the velocity of the spaceship, and the
second integration gives the path traversed from some initial point, which
determines the position of the ship in space. The accelerations are
measured by means of accelerometers oriented in a known direction.

The main advantages of inertial systems are their complete independence
from off-ship equipment, and the ability to determine directly the position
and velocity of the spaceship.

In this section we consider the fundamentals in creating inertial naviga-
tion systems of spaceships and the future growth of such systems. Readers
wishing to study this problem in more detail are referred to the book
"Navigational Devices' by V. P.Seleznev /29/.

One of the basic elements of inertial systems is the accelerometer. The
sensitive element of any accelerometer is some inertial mass m connected
to the accelerometer case. Its operation is based on measuring the dis~
placements of this inertial mass with respect to the case, or the force
acting on it. These parameters are proportional to the acceleration of the
spaceship.

Accelerometers can be divided into linear and pendulous accelerometers,
depending on the connection between the inertial mass and the case. In the
linear accelerometers, the inertial mass moves along a straight line, the
sensitive axis of the accelerometer (Figure 92a). The forces, which act
on the inertial system due to accelerations of the spaceship along the
sensitive axis, are measured by a spring. In pendulous accelerometers
(Figure 92b) the accelerations are measured by the angle of deflection of
the pendulum from its unperturbed position, inwhich it is held by a spring.

Spring

a

FIGURE 92, Fundamental diagram of a linear (a) and pendulous { b)
accelerometer

139



~

Let us examine the operation of the simplest linear accelerometer. One
end of the accelerometer spring is attached to the body of the ship, the
other end to the sensitive element (Figure 92a). Suppose that no forces act
on the ship and it moves uniformly and rectilinearly in space (Figure 93a).
The sensitive element of the accelerometer moves together with the space=
ship with the same velocity V, There are no forces stretching the spring,
so the signal from the output of the accelerometer is zero.

FIGURE 93, Diagram of the operation of an acceler-
ometer on a spaceship

a- in the case of uniform motion; b- in the case of
accelerated motion due to the thrust F; c- in the
case of accelerated motion due to gravitational force

FO'

Let us now assume that some force F, for example, the thrust of the
rocket engine, is applied to the ship (Figure 93b). The ship then acquires

an acceleration ag:
al=‘L.
mg
where mg is the mass of the ship.

The acceleration causes an increase in the ship's velocity. However,
the sensitive element of the accelerometer tends to maintain its uniform
motion with the velocity V, and therefore the distance between it and the
point of attachment of the spring to the body of the ship increases. As a
result a deformation of the spring appears:

x——-—"ia
® $

where k is the stiffness of the spring.
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As can be seen from the formula, the deformation of the spring, being
the output signal of the accelerometer, is proportional to the acceleration
of the spaceship.

Let us now assume that the ship moves only under a gravitational force
(Figure 93c). In this case a force Fg=mg acts on the spaceship, and a
force F'z=mg acts on the sensitive element of the accelerometer. The
accelerations of the ship and of the sensitive element will be different, since
their masses are different; but this difference is so small that it can be
disregarded. Consequently, both the ship and the sensitive element will
have the same acceleration, that of a freely-falling body. For this reason
there is no displacement of the sensitive element of the accelerometer with
respect to the ship, the accelerometer's spring is not stretched, and the
accelerometer reads zero.

Thus, in spite of the accelerated motion of a spaceship in a gravitational
field, an accelerometer based on the measurement of inertial forces does
not detect this acceleration. This creates some difficulties in the develop-
ment of inertial systems for spaceships, but by no means excludes their
use for space navigation.

To overcome this difficulty, a signal proportional to the acceleration
due to gravitational forces is produced by a special computer. It is fed,
together with the output signal of the accelerometer, into the integrators of
the inertial system. Thus, the accelerometer records the accelerations
which are due to the thrust of the spaceship's engines and to the drag of the
atmosphere, and the computer calculates the accelerations due to gravita-
tional forces. Such systems are sometimes called gravity~compensated
inertial navigation systems.

In gravity-compensated inertial navigation systems, the velocity compo-
nents andthe distances traversed are computed alongthe three axes of some
coordinate system fixed in inertial space. These may be ecliptic, helio-
centric, equatorial, ship-centered, and so on. The sensitive axes of the
accelerometers should coincide with the directions of the axes of the chosen
coordinate system.

The chosen accelerometer orientation can be maintained either gyro-
scopically, astronomically, or by inertia-pendulum stabilizers. A coordi-
nate system connected to the spaceship does not require the use of an
attitude maintenance system.

It is possible to compensate for gravitational accelerations by placing
the accelerometers in a plane perpendicular to the gravitational force (in
a horizontal plane). Such inertial systems are called locally level. They
are mainly intended for terrestrial aircraft and ships.

The basic elements of inertial navigation systems are:

accelerometers for measuring the accelerations of the spaceship;

a stabilizing system which maintains the accelerometers in a definite
orientation with respect to the chosen coordinate system;

a computing device for integrating the accelerations (for determining the
velocity, the current coordinates of the ship, the compensating signals,
and, in a number of cases, some other parameters);

displays of the output parameters (velocity, coordinates);

a data input for the initial quantities and data (initial coordinates of the
ship in the chosen coordinate system);

control devices, power supplies, and some structural elements.
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Let us consider some of the possible types of inertial systems for solving
the navigational problems of spaceships.

Inertial navigation system with autocompensation for
gravitational acceleration., The principle of autocompensation
consists of using the results of the determination of the spaceship's coordi-
nates, obtained by the inertial system itself, for calculating the signals
which compensate for gravitational acceleration /29/. The system operates
as follows.

A gyroscopic stabilizing system (Figure 94) maintains the platform with
the accelerometers 4,, A, 4, in the XOY plane of a rectangular equatorial
coordinate system whose origin is at.the center of the earth. The sensitive
axes of the accelerometers coincide with the directions of the axes of the
coordinate system chosen. The signals from the output of the accelero-
meters together with the respective compensating signals proceed to the
input of the first integrators I, I,,, I... Integration with respect to time
yields the velocity components of the spaceship along the axes of the chosen
coordinate system. For a zero initial velocity of the spaceship:
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Integrating the obtained velocity components with respect to time in the
second integrators (I, I, Iz) gives the current coordinates of the space-
ship:

t
x.=x0+fV,dt;
‘
y=yo+ [ V,dt;
[
t
z=zo+fV,dt,
0

where x,, y, 2, are the geocentric coordinates of the launch point.

The current coordinates of the spaceship are introduced into the computer
for calculating the signals which compensate for the gravitational accelera-
tion. The velocity components are sent to another channel of the computer
for calculating the spaceship's current velocity:

ve=y viyviqve

It is also possible to determine the direction of the velocity vector.
(The corresponding formulas are left to the reader.) The data character-
izing the current values of the velocity and of the coordinates of the space-
ship are indicated by the displays and are sent to the automatic flight control
system for subsequent solution of the trajectory correction problem.

Let us examine the compensating signals in the case of flight in the space
near the earth. In this case, it is necessary to take into account only the
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gravitational field of the earth. The perturbing accelerations due to other
celestial bodies can be neglected.
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FIGURE 94, Operation of an inertial system with autocompensation for gravitational acceleration

The acceleration components of a spaceship due to the attraction force
of the earth F are:

_ Fuy
gt.y,z—_‘_m —,

where F.,,, are the respective components of the force of attraction on the

ship by the earth's gravitational field, and m is the mass of the ship.
But since
F

F., yz =
COscx“,.y,z

’
r

=% — Y. =2
cosax__—r, Cosa, = — cosaz_.T

where r is the distance from the center of the earth to the ship, we have

Fx . Fy . _ Fz
F,=——:—. Fy:T' F,—*—7".

Substituting F = f}!’ﬂ where M is the mass of the earth, we obtain
r

M. M M.
gx=fr3x; gy=’y' g_'fz-

N z 3

Thus, the compensating signals should be proportional to the magnitudes
of the g,, g,, g,, and the gravitational constant and the mass of the earth must
be in the memory of the computer. The values of the current coordinates
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x,y,z of the ship are continuously and automatically updated, and the value
of r is calculated by the computer. Obviously,

r=V x4+ 45+ 2

For interplanetary ships, it is more convenient to use a rectangular
heliocentric coordinate system with the XY plane coinciding with the ecliptic.
This coordinate system was described in the first chapter. In this case, it
is necessary to take into account the gravitational force not of a single
celestial body, as in the previous case, but of several celestial bodies (the
sun and planets), and the structure of the compensating signals will be as

follows: ;

x—X
o= X M=%

iml ‘

n y—v
g, =F XM =2

1=1 i

_ ; z—1Z;

gz—szi'——a—y

=1 "

where M; are the masses of the celestial bodies; X, Y, Z; arethe heliocentric
coordinates of the celestial bodies (for planets they vary in time due to the
motion with repsect to the sun); r; is the distance from the i th celestial
body to the spaceship: r,-——V(xl—— XP4+y—Y)rR+(z—Z)3.

The system's errors, in general, are determined by the inaccuracy of
the initial coordinates, the calculation error of the compensating signals,
drifting of the gyroscopes, and instrument errors of all the units of the
system. Investigations show that errors in the formation of the compensa-
ting signals are the reason for the system's instability. In other words,
the errors in the determination of the coordinates do not damp out, but
increase during the operation of the system /29/. This can be seen from
the graphs of the variation of the ratio of the current error Ay to the initial
error Ay, as a function of the altitude above the earth and the flight time,
calculated for a ship moving in the direction of the Y axis (Figure 95). In
this case the system is stable with respect to the remaining two channels
X and Z. However, when moving along an arbitrary trajectory, the
system is unstable inall three channels. The decrease in the growth rate
of the error with increasing height is due to the decrease in the effect of the
gravitational force with increasing flight height.

The instability of such a system is its fundamental shortcoming, but it
cannot be concluded that inertial systems cannot be used for space naviga-
tion. First, the errors grow relatively slowly and second, the system can
be made stable by giving it some external navigational information. Inertial
systems can be used not only for space navigation purposes, but also for
simulating a spacecraft's trajectory in the gravitational field of any number
of celestial bodies. In fact, knowing the orbital parameters of these celes-
tial bodies and given the initial conditions (point of entrance into orbit, and
the spacecraft's velocity vector at this point), it is possible to obtain from
the computer of such a system the time-variation of the coordinates of the
vehicle, i.e., a simulation of its trajectory. In this case, it is also possible
to obtain the trajectory taking into account the thrust of the vehicle's
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engines. For this purpose, at the appropriate moments, analytically
calculated data corresponding to the accelerations due to the thrust of the
engines should be introduced into the computer.
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FIGURE 95, Relative error cf the y coordinate of a
spaceship versus flight time for various altitudes in the
case of a ship moving in the direction of the ¥ axis

Thus, such a system can be used as a simulator for the solution of
particular n-body problems and for the selection of optimum flight trajec-
tories of interplanetary ships and spacecraft.*

Inertial navigation system without a stabilization
system. We said before that a necessary element of every inertial navi-
gation system is a stabilization system for orienting the accelerometers
with respect to the axes of the coordinate system, or, in other words, for
representing on the spaceship the axes of the chosen coordinate system.
However, it is possible to build an inertial system without such stabilization.

The direction of the axes of the chosen coordinate system can be
calculated analytically from the output of six accelerometers, rigidly
mounted on the body of the ship. There are two orientations of the sensitive
axes of the accelerometers with respect to the coordinate system, which is
fixed to the ship. In thefirst type (Figure 96a) the sensitive axes of the
accelerometers are in pairs, perpendicular to the respective coordinate
axes. In the second type (Figure 96b) they coincide with the respective
axes.

If, due to some external or internal forces, the ship begins rotating,
for example, about the Z axis, with some angular acceleration, the
sensitive elements of the accelerometers A,, and A, (Figure 96a) shift in
opposite directions parallel to the X axis. Signals of the same sign appear
at the output of the accelerometers, since the springs of both accelero-
meters are extended or compressed. On the outputs of these accelero-
meters a signal appears when the ship accelerates along the X axis, but
the signs of the signals will be, as can be easily seen, opposite. Conse-
quently, by comparing the signs of the output signals of the corresponding

* This proposal was for the first time made by V. A, Bodnerand V. P, Seleznev /8/,
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accelerometers, it is possible to distinguish angular from linear
acceleration.

X2 A

h, =34, i

a b

FIGURE 96, Arrangement of a six-accelerogneter strapdown inertial system

a- perpendicularly; b- parallel to the coordinate axes.

Accelerometers placed along the coordinate axes (Figure 96b) measure
the angular velocities of the spaceship. Linear acceleration, for example
along the Y axis, causes signals of different signs of accelerometers A,
and A,,, and an angular velocity about the Z axis causes signals with the
same sign at these accelerometers. Thus, comparing the signs of the
accelerometers' outputs makes it possible to determine whether the outputs
result from a rotation of the spaceship about its center of mass, or from
linear acceleration,

Double integration with respect to time of angular accelerations, as well
as integration of angular velocities, determines the angular coordinates or
the rotation angles of the coordinate system of the spaceship with respect
to the fixed coordinate system, in which the navigational problems are to
be solved.

The linear acceleration measured by the accelerometers can be projected
on the X,, Yo, Z,, axes of an inertial coordinate system, and then integrated
as in the previous system to obtain the ship's velocity components and
position in the chosen inertial coordinate system. A direct integration of
the signals of the accelerometers with subsequent projection of the results
on the axes of the inertial coordinate system is also possible.

As in the stabilized navigator, the obtained coordinates are used for
calculating the compensating signals for gravitational accelerations. These
signals in the first case are introduced directly into the integrator, and in
the second case, are first projected on the axes of the ship's coordinate
system.

Errors in the determination of the velocity and position of a spaceship
by a strapdown inertial navigation system may be due to errors of the initial
orientation of the ship's coordinate system with respect to the fixed inertial
system, measurement errors of the accelerometers, errors in calculating
the compensating signals, and errors of the integrators. The larger the
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distance between the accelerometers, the higher the sensitivity of the
system to angular motions, but in this case errors may appear in the
measurement of the accelerations, including violation of the parallelism
of the sensitive axes as a result of deformations of the ship's body. Even
small deformations under large distances between the accelerometers may
lead to very large errors in the measurement of the accelerations.

The strapdown inertial navigation system with autocompensation for
gravitational acceleration is also unstable, i.e., the errors of the coordi-
nate calculation increase with time. It can be used as a '""memory" device,
in conjunction with the rest of the ship's navigational equipment, to deter-
mine its position.

Inertial navigation systems on spaceships make it possible to measure
the velocity very accurately, but considerable errors accumulate with time
in the determination of the position. Astronomical systems, based on
measuring parameters of heavenly bodies, can determine the position of a
spaceship very accurately, but the velocity, calculated from the distance
between two positions of the ship, results in large errors. The combination
of these systems into a single complex navigation system, called an
augmented inertial system, as is shown by investigations /29/, not only
makes it possible to compensate for the individual disadvantages, but also
increases the accuracy of the navigation.

As an example of an augmented system, we consider the astroinertial
system, an inertial system to which external information, in the form of
elevation angles of celestial bodies, is sent.

Astroinertial system. The system consists of a gyroscopic
platform with three accelerometers whose sensitive axes are along the
axes of the chosen coordinate system, an astrotracker for tracking three
celestial bodies, integrators for calculating the velocity and coordinates,
and three computers (Figure 97).
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FIGURE 97. An astroinertial navigation system

Cy, €2, and Cg- computers; 7,, 7,, and 7y - telescopes.
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The coordinates of the spaceship go from the integrators to computer
C, for calculating the gravitational compensation, and to computer C, for
obtaining the angular coordinates in order to aim telescopes T}, T,,and T

Due to inevitable errors in the calculation of the ship's coordinates, the
calculated and actual angular coordinates will not be equal. The difference
of the angular coordinates is measured by the telescopes, and fed to the
computer C; which calculates corrections Ax, Ay, Az to the ship's coordinates,
obtained by integration of the measured accelerations. These corrections
are fed back to the acceleration integrators.

Investigations /29/ show that by proper choice of the transfer functions
of the loops, it is possible to render the system's position error not only
stable with any oscillation frequency of the input errors, butalso attenuating.
That is, the errors in the initial value of the coordinates of the spaceship
will decrease with time. However, on the whole, the system's errors in
determining the ship's coordinates cannot be smaller than the errors intro-
duced by the astrotracker, and therefore, in building astroinertial systems,
one should strive at building as accurate an astrotracker as possible.

The astroinertial navigation system can work in three modes: the normal
operation mode, in which the oscillation period of the determination errors
of the ship's coordinates is close to the revolution period of the ship about
the celestial body with respect to which the flight is made; a mode of forced
elimination of the determination errors of the coordinates at a given time,
and, finally, a "memory' mode, when for some reason direction finding of
the celestial bodies is impossible, and the system operates as a pure iner-
tial navigator.

The combination of an inertial system with correctors, sources of
external information, makes it possible to build a navigation system
which can determine with high accuracy both the velocity and position of an
interplanetary ship.

Integrated navigation systems for spaceships. Recently,
reports have appeared in the foreign press /38/ about the development of
a new type of complex for airplane navigation. It includes various naviga=
tional information units: an inertial system, airborne radar, radio-elec-
tronic means for determining the position of the airplane, astrotrackers,
and systems and means for measuring the flight parameters, altitude,
velocity, course, and so on.

Such systems differ from the ordinary airplane navigation systems. For
example, units, which in given conditions provide the highest accuracy for
some navigation problem, are connected automatically. All the aggregate
parts of the system are checked periodically and defective equipment is
automatically disconnected and reserve equipment is turned on. The out-
puts of the units are processed together and sent to the displays. The basis
of such systems is the integrated control unit, and hence such systems are
called integrated.

Excellent reports of such systems are given in the foreign press. Thus,
the American AN/ASN-24 integrated airplane navigation system with a
computer using semiconductor instruments (weight of the computer with
the integrated control unit 14.5 kg) can solve a series of navigational prob-
lems, including the determination of the airplane's current geographical
coordinates with an error of only 0.07% of the distance traversed /29/.
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Some scientists believe it is possible to create integrated systems for
the solution of the principal and by-problems of the navigation and flight
control of spaceships. In a prolonged spaceflight, failure of individual
elements of the navigational equipment is quite likely. This demands periodic
checking. The requirement of high flight accuracy along a prescribed
trajectory in a prolonged flight and a number of other important problems
indicates the experience of using such systems on spaceships.

§6. Some By-problems of Space Navigation

By-problems of space navigation is the term we will apply to auxiliary
problems, solved along with the basic problems of navigation considered
above. Of these problems the most important are the maintenance or
stabilization of the ship in a definite prescribed orientation in space, and
the measurement of time in a spaceflight.

The solution of the stabilization problem is primarily necessary for
target-directed maneuvers, connected with the modification of the flight
trajectory such as descent, transfer to a new orbit, modification of some
elements of the flight orbit, and so on. To be able to perform these, as
we already know, the spaceship has to be given a definite position in space
with respect to some coordinate system.

b4

Z, ship

Yship

FIGURE 98. Orientation of a ship in space with respect
to some XYZ coordinate system

Stabilization of a spaceship is also necessary for other reasons. For
example, navigational measurements, communication with the earth,
scientific observations, use of solar energy for recharging of electroenergy
sources on board, and a series of other circumstances also require the
stabilization of the ship in space.

The stabilization of a spaceship is performed with respect to some
coordinate system, and therefore to solve the stabilization problem it is
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first necessary to simulate in some way this coordinate system on the ship.
A given position of a ship in space is determined by three angular coordinates
(Figure 98), and therefore, some three directions, which in the following
we will call stabilization axes, should in general be simulated on the ship.
With respect to these axes the spaceship should be stabilized.

We note that for the solution of certain problems it is sufficient to
stabilize the ship with respect to one axis only (for example, the Z axis
of an earth satellite is made to coincide with the local vertical, and the X
and Y axes in the horizontal plane are not stabilized). When an earth
satellite or an interplanetary ship, returning to the earth, descends, the
X axis should be made to coincide with the orbital velocity vector (in an
opposite direction).

Without discussing those devices, by means of which a ship can be
stabilized in space, we consider possible principles of simulating the
stabilization axes. *

One of the stabilization axes for low-orbit spaceships may be the local

vertical. On a ship it can be simulated by various methods, for example,
by an inertial system, which navigates in a horizontal
" coordinate system. In this case the stabilized plat-

form is placed in the horizontal plane, i.e., perpen-
dicular to the local vertical.
Simulation of the local vertical is also possible

Local
vertical

At
A\

/

FIGURE 99, Simulation of
the local vertical by track-
ing the edges of the visible
disk of the earth ( planet)

by tracking the visible edges of the earth by means

of three or more photoelectric systems, working
either in the visible, or infrared part of the spectrum
(Figure 99). In this method, for example, a three-
beam photoelectric system mounted on the spaceship
tracks the visible edges of the earth's disk. The
directions of the telescope's optical axes form a
trihedral pyramid whose axis coincides with the center
of the earth. Thus, the axis of the pyramid is the
local vertical at the position of the ship.

Such a scheme presents a series of difficulties;
one of these is the difficulty in tracking that part of
the earth's disk which is not illuminated by the sun
(the night side). Other errors of this method are due
to the nonsphericity of the earth, the unevenness of
its surface, and the presence of clouds, smoke, etc.
When a ship flies above the earth at a height of

500 km, individual sections of the terrain have heights of up to 10km, and

the error in the simulation of the vertical is less than 1°.

On the average,

the assumed simulation accuracy may amount to a fraction of a degree.
Simulation of the local vertical is also possible by using the screening
properties of the terrestrial globe to the isotropic component of cosmic
rays. ** For this purpose a system of three or four cosmic ray counters,
directed to the edge of the visible disk of the earth, are mounted on the

ship.

If for some reason in the system of four counters, one is pointing

* Problems of the stabilization dynamics of a ship in space and the principles of the stabilization equipment
are described in the book of K. B, Alekseev and G,G.Bebenin /3/,
* * The isotropic component of cosmic rays consists mainly of neutrons, which are not deflected by the earth’s

magnetic field,

150




above the horizon, then due to the screening property of the earth, the
number of particles recorded by its opposite counter sharply decreases,
and the number of particles recorded by the first counter increases.
Tracking of the visible edges of the earth's disk can be automatic.

It is assumed that the accuracy of the vertical simulation by this method
is low, about 10°,

The stabilization axis for low-orbit and interplanetary ships returning
to the earth may also be the projection of the ship's velocity vector on the
horizontal plane. Simulation of this stabilization axis can be most easily
done by means of an optical driftmeter, an instrument for observing the
relative motion of the earth, due to the motion of the ship. The direction
of the stabilization axis coincides with the direction of the motion of the
earth. A similar method and corresponding instruments, for example, the
AB-52 sights, are used in aircraft navigation for the determination of the
vector of the path velocity from the drift angle and its magnitude. On the
Soviet '"Vostok' spaceships, an optical driftmeter was used (see Figure 90).

In principle, the directions of celestial bodies (sun, moon, planets, and
stars) found by appropriate photoelectric tracking devices, can be used as
axes of stabilization. Thus, for the descent of a "Vostok' earth satellite,
the ship was automatically oriented with respect to the sun /2/.

trerrrrerttt

FIGURE 100, Orientation of an automatic interplanetary ship on the sun and moon

1, 2,..., 6- different positions of the AIS on the orbit (3, 4- orientation of the
AIS on the sun); 5- orientation of the AIS on the moon.

The third Soviet lunar rocket, launched on 4 October, 1959, for photo-
graphing the invisible part of the lunar surface, was oriented with respect
to the sun and the moon (Figure 100). The orientation system turned and
stabilized the automatic interplanetary station in the required position first
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with respect to the sun (positions 3 and 4) and then, for direct photography,
in the direction of the moon (position 5).

Errors in this type of stabilization include: inaccurate knowledge of
the coordinates of the celestial bodies with respect to which the ship is
stabilized, instrument errors in the photoelectric tracking systems, and
deviation of the brightness center of the celestial body from its geometrical
center. The last reason may lead to considerable errors when orientation
is by celestial bodies whose illumination passes through different phases,
such as the moon, Venus, and Mercury. The errors will be large when

flying near these celestial bodies. For
example, when flying near the earth,
J the orientation on the first or last
2 quarter moon will be in error up to 8',
and at closer distances to the moon
the error may reach degrees and even
tens of degrees.
The local vertical when flying inside
! the sphere of action of any celestial
body can be determined by means of a
very simple sensitive element which
Planet looks like a dumbbell. The rod
connecting the massive spherical masses
FIGURE 101, Orientation of a dumbbell at the ends of the dumbbell will always
sensitive along the local vertical reach an equilibrium position directed
towards the center of the celestial body
(Figure 101). This is due to the fact
that, when the axis of the dumbbell
deviates even slightly from alignment
with the vertical to the center of the celestial body, the spherical end closer
to the celestial body, experiencing a greater gravitational attraction than
the other, will give rise to a moment tending to restore equilibrium.

Incidentally, for this reason the moon always turns the same side to the
earth; it is not completely spherical and in this respect resembles a
dumbbell.

Such a dumbbell continuously oscillates about the equilibrium position.
Reaching the equilibrium position, the dumbbell passes it and continues in
the opposite direction, ‘then again returns to it, passing to the other side,
and so on. This is how a dumbbell sensitive element will behave in the
absence of friction.

When flying along a circular orbit, the oscillation period of a dumbbell
sensitive element is:

1,2, 3- positions of the dumbbell on the orbit.

P
=V
where P is the revolution period of the spaceship around the celestial body.

For an artificial earth satellite on a circular orbit with a revolution
period of P= 90min, the oscillation period will be slightly more than
52 min,

It is possible to attenuate the oscillations of the dumbbell. As a damping
device it is possible to use, for example, a piston coupled to the dumbbell
and moving in a vessel filled with liquid, or a magnetic field. Other simple
ways for solving this problem are possible.
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Damping of the lunar oscillations is possibly due to internal friction from
tides, caused in the body of the moon by the earth.

It should, however, be borne in mind that the forces orienting the dumb-
bell are small, and therefore it is necessary either to use very massive
parts, or a very long rod. The latter is apparently more acceptable, since
in a space flight there are no obstacles for placing such a dumbbell outside

the ship. Building ships in the form

Solar sail of a dumbbell is also possible. Such

\\\\ l a ship will have its Z axis oriented in
v’ ////// the direction of the celestial body.

0= We note, finally, the possibility of

755 simulating the direction of the sun by
// means of a solar vane. Imagine a
@ light-weight cone of foil or paper with
an arm which can rotate about axes
perpendicular to the axis of the arm
(Figure 102). Such a device, placed
outside the spaceship, under the
pressure of the sun's light rays will
have the axis of the arm pointing in
the direction of the sun.
Usinga solar vane, it is possible to turn
a spaceship. AtSaturn’s orbit, the pres-
sure of the solar rays is only 0.001mg/m?
If the areaofthe vane is 100 m2 and the
length of the arm is 80 m, a spaceship
weighing 1 tonwill be turned in the direc-
FIGURE 102, Orientation of a sensitive vane ele- tion of the sun inless than 24 hours.
ment in the direction to the center of the sun Another by-problem of space
navigation is the problem of autono-
mous time measurement in space flight.
Timekeeping in a space flight can be done by means of various spring clocks,
as well as by electric mechanisms. For this purpose, use can also be made
of various atomic clocks, high-stability instruments for time measurement.
In one of these instruments, a high time measurement accuracy is achieved
by a quartz oscillator which is continuously controlled and synchronized with
respect to the resonance frequency of the cesium atom (9, 192, 631, 830 cps).
The accuracy of the atomic clock is, in relative units, 10-%, Such clocks de
deviate in 100 years by only 3 sec. Atomic clocks are heavy: one aircraft
model weighs 27kg /29/. In addition, the failure of such a complicated
instrument in a prolonged flight is possible.

In contrast to the atomic clock, spring and electric clocks are completely
reliable instruments for time measurement, but for a prolonged flight they
are unsuitable due to the considerable errors which increase with time. It
is possible to correct these clocks by means of radio signals sent from the
earth. However, due to the large distances and to the finite propagation
velocity of radio waves, large errors in this method of timekeeping are
also probable. The problem therefore arises of working out other methods
for keeping and measuring time in interplanetary flights, particularly
autonomous methods. One sufficiently simple, and at the same time com-
paratively accurate method of autonomously measuring time has been
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proposed by V. P. Seleznev /29/. Like other astronomical methods of time
measurement, this method is based on the periodicity of astronomical
phenomena.

Sun

FIGURE 103, Time measurement on a space flight from
the position of the satellite Sa of the planet Pl

Let us assume that a satellite Sa of a planet P1 moves along a stationary
orbit with known elements (Figure 103). The value of the true anomaly §
of the satellite, measured from some initial direction 0’X’, determines the
time interval which passed from the moment it passed the direction O0’X’.
Thus, time measurement by this method requires knowing the moment of
passage of the satellite through the Jine 0’X’ and measuring the angle &

The angle § can be measured by a spaceship only indirectly, i.e., by
measuring its related dihedral angle ¢ between the planes F, and F, by
means of which the directions 0X’ (it may be a direction of a star) and of
the satellite Sa are found. The function #=f(e) depends on the mutual
positions of the spaceship, planet, satellite, and the orbital plane of the
satellite.

The relation between the angle 8 and the time T can be written in the
form:

b= 2T —T) + 1T —T)),

where P is the period of revolution of the satellite; T, is the moment of
passage of the satellite through the direction 0'X’; [(T —T,) is some correc-
tion which is introduced in order to allow for the ellipticity of the satellite's
orbit,

In order to perform the indicated measurements and calculate the time,
it is necessary to know the coordinates of the centers of the satellite and
the planet; their variation with time (the ephemerides of the celestial
bodies), the ship's coordinates, obtained from the navigational system, the
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moment of passage of the satellite through the direction 0’X’ or the moment
of passage through the orbit point nearest to the planet, and the position of
the line of apsides of the satellite orbit.

Investigation shows that to increase the accuracy of the time measure-
ment by this method it is necessary to increase the measurement accuracy
of the rotation angle of the radius-vector of the satellite, and to choose a
satellite (of the sun or of a planet) with as short a period of revolution as
possible /29/.

There are many planetary satellites with short revolution periods; both
satellites of Mars, six satellites of Jupiter (the revolution period of the
sixth satellite is 16.689 days), seven satellites of Saturn (the revolution
period of the seventh satellite, Hyperion, is 21.28 days), all six satellites
of Uranus, and the first satellite of Neptune, Triton (revolution period 5.88
days).

If an error of 1" is made in the measurement of the angle $§ and the
revolution period of the satellite is 24 hours, then the error in the time
determination is only 0.008 sec. For the same measurement accuracy of
the angle §, when the moon is used for the time measurement (P = 27,32
days), the error in the time determination is 1.86 sec.

The error in the time determination willbe evenlarger if a planet is used
for this purpose. The mean sidereal revolution of the nearest planet to the
sun, Mercury, is 87.97 days. For such a revolution period and the same
1" error, in the measurement of the angle §, theerror inthe time measure-
ment will be more than 6 sec. In view of the fact that an accuracy of 1" in
the measurement of the angle ¢, is very high and for the time being is
practically unattainable, the conclusion can be drawn that for the time
measurement by this method it is now possible to use only the near
satellites of planets.

These, briefly, are the main by-problems of space navigation and the
possible methods of their solution.
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